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Automatic discrimination of Yam
amoto-Kohama
classification by machine learning approach for invasive

pattern of oral squamous cell carcinoma using digital
microscopic images: a retrospective study

Kunio Yoshizawa,a Hidetoshi Ando,b Yujiro Kimura,a Shuichi Kawashiri,c Hiroshi Yokomichi,d

Akinori Moroi,a and Koichiro Uekia
Objective. The Yamamoto-Kohama criteria are clinically useful for determining the mode of tumor invasion, especially in Japan.

However, this evaluation method is based on subjective visual findings and has led to significant differences in determinations

between evaluators and facilities. In this retrospective study, we aimed to develop an automatic method of determining the mode

of invasion based on the processing of digital medical images.

Study Design. Using 101 digitized photographic images of anonymized stained specimen slides, we created a classifier that

allowed clinicians to introduce feature values and subjected the cases to machine learning using a random forest approach. We

then compared the Yamamoto-Kohama grades (1, 2, 3, 4C, 4D) determined by a human oral and maxillofacial surgeon with those

determined using the machine learning approach.

Results. The input of multiple test images into the newly created classifier yielded an overall F-measure value of 87% (grade 1,

93%; grade 2, 67%; grade 3, 89%; grade 4C, 83%; grade 4D, 94%). These results suggest that the output of the classifier was very

similar to the judgments of the clinician.

Conclusions. This system may be valuable for diagnostic support to provide an accurate determination of the mode of invasion.

(Oral Surg Oral Med Oral Pathol Oral Radiol 2022;133:441�452)
Oral squamous cell carcinoma (OSCC) accounts for

approximately 90% of all cases of oral cancer. Despite

improvements in treatment options over the past few

decades, the 5-year survival rates have remained fairly

low (50-60%) among patients with OSCC.1-4 Treat-

ment failure in a case of OSCC is mainly ascribed to

the highly invasive nature of the tumor.5,6 As the tumor

becomes more invasive, the invasion front progresses

from the epithelium through the stroma to infiltrate the

lymphatic and blood vasculature.7 This phenomenon is

directly linked to an increased likelihood of metastasis

and a poor survival prognosis. Particularly, accurate

diagnosis of the invasiveness of OSCC is a very impor-

tant component of treatment planning and prognostic

predictions.8,9 To improve the diagnosis and prognosis

of OSCC, previous researchers have reported various

histopathological classifications.5,9-12 The
aDepartment of Oral Maxillofacial Surgery, Division of Medicine,

Interdisciplinary Graduate School, University of Yamanashi, Chuo,

Yamanashi, Japan.
bDepartment of Media Engineering, Graduate School of University

of Yamanashi, Kofu, Yamanashi, Japan.
cDepartment of Oral and Maxillofacial Surgery, Kanazawa Univer-

sity Graduate School of Medical Science, Kanazawa, Ishikawa,

Japan.
dDepartment of Health Sciences, University of Yamanashi, Chuo,

Yamanashi, Japan.

Received for publication Jun 15, 2021; returned for revision Sep 2,

2021; accepted for publication Oct 6, 2021.

� 2021 The Author(s). Published by Elsevier Inc. This is an open

access article under the CC BY-NC-ND license (http://

creativecommons.org/licenses/by-nc-nd/4.0/)

2212-4403/$-see front matter

https://doi.org/10.1016/j.oooo.2021.10.004
histopathological classification of OSCC by the World

Health Organization is based on the original descrip-

tion by Broders.10 In this system, squamous cell carci-

noma is a malignant epithelial neoplasm exhibiting

squamous differentiation, as characterized by the for-

mation of keratin and/or the presence of intercellular

bridges representing desmosomes.13 The Yamamoto-

Kohama (YK) classification proposed by Yamamoto

et al.,9,14,15 which subdivides grade 4 that represents

the worst prognosis based on Jakobsson et al.’s crite-

ria12 into grade 4C (cordlike type) and grade 4D (dif-

fuse type), classifies OSCC according to invasive

capacity. Japanese oral surgeons often use the YK sys-

tem to predict metastasis and prognosis (Table I).

Understanding the invasive ability of OSCC is essential

in providing appropriate treatment. The YK system

classifies invasion into the stroma as type 3 or higher,

and prognosis worsens as the carcinoma progresses to

types 4C and 4D. We have previously shown that inter-

cellular adhesions, such as E-cadherin, weaken with

worsening invasive patterns.6,16 In the modification of

the 8th edition of the American Joint Committee on
Statement of Clinical Relevance

We have introduced machine learning to automati-

cally determine invasion patterns using medical

image processing based on digital images of the

invasive front of oral cancer. This has made it possi-

ble to accurately determine the invasion pattern of

oral cancer.
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Table I. Yamamoto-Kohama classification

Grade Histologic grading

1 Well-defined borderline

2 Cords, less marked borderline

3 Groups of cells, no distinct borderline

4C Diffuse invasion, cordlike type

4D Diffuse invasion, widespread type
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Cancer (AJCC),17 depth of invasion (DOI) was incor-

porated into the criteria for T classification.17 Aaboub-

out et al.18 recommended elective neck dissection if

the DOI is>4 mm, considering the possibility of occult

lymph node metastasis in early-stage cancer. These

results suggest that YK classification and the DOI val-

ues are closely correlated with the prognosis. This clas-

sification system appears to be a powerful predictor of

regional metastasis in a patient with clinically node-

negative OSCC. A YK classification�based evaluation

mainly involves biopsy and excised tissues, and the

results are used to determine the prognosis and select

treatments. However, this evaluation method is based

on subjective visual findings and has led to significant

differences in determinations between evaluators and

facilities. Therefore, the YK classification is not a suffi-

ciently objective index. Furthermore, no report has

described the relationship between the visual aspects of

infiltration on images of pathologic tissues and the

results of an objective image evaluation based on sam-

ples from patients with OSCC.

Many recent studies have demonstrated the effec-

tiveness of pathologic image analysis methods that

incorporate artificial intelligence (AI). One experimen-

tal study that compared the diagnostic accuracy of a

pathologist and AI with respect to pathologic images

of breast cancer lymph node metastasis determined

that the latter was more time efficient.19 In another

example, reports from various countries have reported

that the Gleason score, an index of prostate cancer

malignancy, is poorly reproducible among patholo-

gists. In that context, Arvaniti et al.20 demonstrated the

use of AI to match the accuracy rate of the Gleason

index with its reproducibility among pathologists.

Several recent reports have described various

approaches that have used machine learning to detect

various grades of carcinomas from photographic

images of lesions, radiologic images, and pathologic

specimens.21-29 In the field of oral cancer and dental

surgery, there are many reports on the application of

AI systems, such as a study using deep learning to

determine lymph node metastasis from computed

tomography (CT) findings and color Doppler ultraso-

nography30-32 and classification of dental restorations

from panoramic imaging findings.33 However, few
reports have described an automatic method for deter-

mining the invasion activity based on the computer

processing of a digital image of the invasion front in

oral cancer.34 Although few reports describe a method

of automatically determining invasive activity based

on computer processing of digital images of the inva-

sive front of oral cancer, Shan et al.34 reported that

invasive patterns such as “tumor budding” and DOI

predominantly predict lymph node metastasis. There-

fore, in this study, we aimed to develop a method for

medical image processing to automatically determine

the mode of invasion based on digital images of the

invasive front of an OSCC.

MATERIALS ANDMETHODS
Specimens
Sixty-seven primary OSCC biopsy specimens were

obtained from patients who underwent surgical resec-

tion at the Department of Oral and Maxillofacial Sur-

gery, Kanazawa University Hospital, between 1989

and 2009. The patients (38 male and 29 female

patients) ranged in age from 32 to 91 years (mean age,

60 years). Informed consent for the experimental use

of the samples was obtained from the patients accord-

ing to the hospital’s ethical guidelines. The engineering

department of Yamanashi University performed the

imaging analysis of the pathologic specimens as a

third-party assessment organization to eliminate evalu-

ator bias. Prof. Yamamoto, the proponent of the YK

classification, helped us (clinicians) discriminate the

grade for YK classification from each hematoxylin and

eosin (HE)-stained specimen as supervised images. A

total of 101 specimens were evaluated and assigned the

following YK grades: grade 1, 23 specimens; grade 2,

12 specimens; grade 3, 27 specimens; grade 4C, 21

specimens; and grade 4D, 18 specimens. The retrospec-

tive study protocol was approved by the ethics commit-

tees of Yamanashi University (approval 1267) and

Kanazawa University (approval 1647-1). This study

was conducted in accordance with the Declaration of

Helsinki.

Staining methods

Immunohistochemistry (IHC) of deparaffinized and

rehydrated sections was performed according to the

labeled streptavidin-biotin method as described by

Nozaki et al.14 To clearly detect tumor cells at the bor-

derline, the sections were reacted overnight at 4˚C with

each primary monoclonal antibody specific for uroki-

nase-grade plasminogen activator/receptor (uPA/

uPAR) (200-fold dilution in phosphate-buffered saline

[PBS]; American Diagnostica, Stamford, CT) and clau-

din-7 (200-fold dilution in PBS; Invitrogen, Camarillo,

CA). uPA/uPAR was proved to distinguish OSCC with

higher invasive grades (grades 4C and 4D), whereas

claudin-7 with a tight junction component was proved
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to distinguish OSCC with lower invasive grades

(grades 1-3) in an immunohistochemical analysis of

pathologic tissue specimens according to the YK

classification.15,35 The sections were then reacted with

a secondary antibody (biotin-labeled goat anti-rabbit

immunoglobulin polyclonal antibody; Dako Japan,

Kyoto, Japan) at room temperature for 60 min. Sections

treated with PBS instead of the primary antibody were

used as the negative controls.

YK classification
In Japan, the departments of oral maxillofacial surgery

at many institutions use the YK classification. This

method is used for the histologic evaluation of malig-

nant tissues and is focused on the invasion pattern at

the tumor�host tissue border. The YK classification

was previously shown to be strongly correlated with

the risk of lymph node metastasis and prognosis.9 The

YK evaluation criteria are presented in Table I.

Overview of the machine learning methods
Two approaches to the automatic determination of the

OSCC invasion pattern were applied in this study.

First, we searched the region of interest (ROI) of the

invasive front using whole slide images (WSIs), and

then the same ROI site was expanded to £ 100 to

extract the features and determine the mode of invasion

(Figure 1). The ROI was selected with reference to the

DOI recommended by the AJCC 8th edition staging

system of the T category.36 To select ROI as the point

of deepest invasion, we establish the horizon that is at

the level of the basement membrane relative to the
Fig. 1. Setting of the region of interest (ROI) from a whole slide im

slide images. The ROI site was expanded to £ 100 to extract the fe

as the region of deepest invasion, we establish the horizon (horizont

ment membrane relative to the closest intact squamous mucosa, an

“plumb line” (blue vertical line: length of 3700 mm) from the horiz

is a scaler bar measuring 150 mm.
closest intact squamous mucosa, and we select the ROI

from the deepest invasion by dropping a “plumb line”

from the horizon, as shown in Figure 1. Second,

machine learning was applied to cases for which a cli-

nician had previously evaluated the mode of invasion

based on the YK classification, and the images were

classified by random forest. Here, we considered a

shape characterization of the invasive front in the

image to be effective for discriminating the mode of

invasion. The characterized shape of the OSCC inva-

sion patterns was then extracted by experienced pathol-

ogists to create feature vectors that were suitable for

the classifier of the mode of invasion.

The proposed processing method was performed as

described by Inoue et al.37 and is summarized in

Figure 2. A schematic summary of the series of image

processing is shown in Figure 2. We evaluated 2

approaches for extracting the feature vector of the YK

classification. First, we extracted the color features for

binarization from the original immunohistochemical

images and made a classifier for binarization. Second,

we extracted the shape features for discrimination of

YK classification and made a classifier for the discrimi-

nation of YK classification. The invasion mode (i.e., YK

classification) was determined automatically using

machine learning according to the following methods,

which are presented in the following order:37 (1) extrac-

tion of color features for binarization, (2) creation of

classifiers for binarization, (3) binarization of unknown

color data, (4) extraction of shape features for the dis-

crimination of YK classification, (5) creation of classi-

fiers for YK classification, and (6) discrimination of the
age. We searched the ROI of the invasive front using whole

atures and determine the mode of invasion. To select the ROI

al blue line: length of 9500 mm) that is at the level of the base-

d we select the ROI from the deepest invasion by dropping a

on. The black inserted line in the £ 100 magnification image



Fig. 2. Image processing to differentiate the mode of invasion. (1) Classifier training. (2) The binary image processing procedure.

(3) The procedure used to discriminate the mode of invasion (Yamamoto-Kohama [YK] classification).
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YK classification of the binary image. The microscope

images were digitized using a whole slide scanner

(KEYENCE BZ-9000; KEYENCE, Osaka, Japan) at a

resolution of 680 £ 512 pixels/inch. When the original

image was binarized, the image was compressed to

320 £ 240 pixels/inch, which was sufficient to capture

the features of color and texture. In this research, we

demonstrate the use of local binary patterns (LBPs)38 in

combination with random decision tree classifiers, which

can be used to divide the tumor epithelium and the stro-

mal region of OSCC. Furthermore, scikit-learn, a

machine learning library for the Python programming

language, was used for numerical science and technol-

ogy calculation of machine learning.39
Binarization
The histopathological image of each tumor was divided

into epithelial and stromal regions to extract the invasion

front from the image. First, a borderline was created to

divide the tumor epithelial and stromal regions. Binariza-

tion was then performed to distinguish the epithelial and

stromal sides. In this process, the color pixels on the

tumor side were converted to black and those on the stro-

mal side to white. Initially, clinical experts performed the

binarization processing series and used the resulting

human analyst�generated images as a training data set

for machine learning. The binarization process is summa-

rized in the upper panel of Figure 2. Next, a LBPs opera-

tor38 was used to construct a binary code from feature

vectors that extracted the 3 color data of RGB (red, green,

blue) values and the local texture features from 49 pixels

within a square area of which one side comprised 7 pixels
centered on the pixel of the ROI. Color deconvolution is

used extensively in histopathologic image analysis to sep-

arate an RGB image into 3 channels (red, green, and

blue), each corresponding to the actual colors of immuno-

histochemical staining.40,41 At this point, the number of

feature vectors was 49 pixels with a feature vector of £ 3

(the 3 colors of RGB: red, green, and blue), resulting in

147 dimensions per pixel. We applied the LBP operator

to capture the spatial representation of the color image

and thus enable the classification.38 We created a classi-

fier that could use machine learning to determine whether

a training data image should be classified as black or

white based on image-specific stain information with the

local RGB pixel information in a supervised classification

framework according to the methods used by past

researchers.42-44 In these protocols, we attained 101

images of the binary images from the original IHC

images as shown in Figure 3.
Design of the feature extractor
The clinician applied the following 5 features to auto-

matically classify the binarized image into YK classifi-

cation by machine learning: (1) number of epithelial

areas, (2) borderline disturbance, (3) cord-shaped epi-

thelial area, (4) size of the epithelial area, and (5) bor-

derline length.
Features and extraction
Number of tumor (epithelium) areas. The input binary

image data were subjected to labeling on the tumor

side consisting of epithelial tissue (i.e., black-colored

side). The areas surrounded by continuous black lines



Fig. 3. Typical binarized images of each Yamamoto-Kohama (YK) classification used in this research. The borderlines between

the tumor and stromal tissues can be distinguished clearly up to a fine point and are clearly binarized on the immunohistochemis-

try images corresponding to tumors in each YK class.
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were counted to determine the number of tumor

islands. Figure 3 demonstrates that the number of

tumor islands, which was defined as feature value 1

(number) [22], increased as the YK grade increased.

The data serial numbers were then ordered from YK

grades 1 to 4D, such that grade 4D data sets had the

highest serial numbers.
Disturbance of the borderline. The input binary image

was then vectorized with respect to the pixels that rep-

resented the tumor side of the borderline, which corre-

sponded to the basal cell layer of OSCC. For a labeled

object, i, if the length of the borderline is Li and the

number of division points used for vectorization is Ni,

the curvature factor (R) of the average borderline in the

image can be expressed as follows:37

R ¼ 1

n

Xn

i¼1

Ni

Li
ð1Þ

Consequently, the curvature of the borderline

increases as the number of division points increases,

even when the lengths of the borderlines are identical.

This curvature is defined as feature value 2 (curvature).
Feature value 3 (smooth) and feature value 4 (sharp)

were extracted from the protrusion that occurred from

the angle formed by a vector from the middle division

point to the front and rear division points according to

the threshold value. Furthermore, to classify cases where

there was a difference in the variation in the directional-

ity of the protrusions, the directionality of the protrusions

was extracted and set as feature value 5 (direction).
Cord shape of the epithelial area. For an input binary

image, the highest numerical value yielded by dividing

the square root of the labeled object size by the length

of the corresponding contour line was extracted and set

as feature value 6 (cord).
Size of the epithelial area. The number of labeled

objects with a size below a certain threshold was

extracted and set as feature value 7.
Length of the borderline. The length of the borderline

was set as feature value 8 (length) because this parame-

ter was expected to facilitate the distinction between

YK grades 1 and 2.
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Performance evaluation test using a random forest

approach

Next, we experimentally analyzed the resulting dis-

criminant performance when we performed an evalua-

tion based on the YK classification and the extracted

features. Here, we used the leave-one-out (LOO) evalu-

ation method45-47 and the random forest machine learn-

ing algorithm to create a classifier.48 Specifically, at

each iteration of the LOO process, which is performed

over the 101 cases of the entire data set, one sample is

reserved for testing, and all other samples are used to

provide training data of the random forest. Table II

summarizes the main hyperparameters of the random

forests used in the experimental analysis of the image

data subjected to machine learning. This hyperpara-

meter was determined after being tuned by random

search for optimization.49,50 The F-measure was used

as an indicator of precision recall and was calculated

from a confusion matrix that summarized the discrimi-

nation analysis of each YK classification.

Comparison of survival rates determined by the

machine learning approach and a clinician in accor-

dance with the YK classification

We constructed Kaplan-Meier survival estimates to

illustrate the 5-year overall survival rates by YK classi-

fication. We performed a log-rank test to detect the sta-

tistical significance between the estimates for the

intergroup difference.

Statistical analysis

Data analyses were performed using IBM SPSS Sta-

tistics for Windows version 27.0 statistical software

(IBM, Armonk, NY). One-way analysis of variance

and a t test with the Bonferroni adjustment were used

to compare the means of the feature amount among

modes of the invasion group. The Kaplan-Meier esti-

mate compared the survival rates in modes of invasion

between classifications made by machine learning and

clinicians. We performed a log-rank test for the esti-

mates. P < .05 was considered statistically significant.
RESULTS
Association between DOI and YK classification
The mean and standard deviation values for DOI of

YK-1, YK-2, YK-3, YK-4C, and YK-4D were 814 §
680, 873 § 361, 3930 § 3623, 7677 § 5955, and
Table II. Hyperparameters of the random forests

Items of parameter Numerical value

Number of trees 300

Maximum depth 10

Feature number by random selection 3

Number of minimum samples at leaf 2

Minimum information gain 0.01
12,450 § 2490, respectively. The DOI was higher as

the mode of invasion for YK classification increased.
Binary image processing
One hundred one cases, which are deposited as open-

source figures, depict representative binarized images

used to perform the YK classifications in this research.

The borderlines between the tumor and stromal tissues

could be distinguished clearly up to a fine point and are

clearly binarized on the IHC image corresponding to

each YK classification.
Parallel coordinates
Figure 4 shows that the parallel coordinates indicate

the relative ratio of feature amount on the y axis and

indicate each feature domain (features 1-8) on the x

axis based on each mode of invasion (5 types, grades

1-4D). The parallel coordinates form a statistical graph

that is useful for visualizing the multivariate data.51
Distributional observation of the number of
epithelial areas (feature value 1)
In grades 1 and 2, most of the feature value 1 results

were distributed near 1, which was consistent with the

single tumor masses observed on the images. In con-

trast, most of the data sets for grades 3, 4C, and 4D

cases yielded values >1, which was consistent with the

appearance of multiple tumor masses on the images.

Particularly, the feature value 1 for grade 4D speci-

mens was 15 or higher at a half ratio. This phenomenon

was not observed in the other grades. Feature value 1

provided a good distinction of grades 1 and 2 from

grades 4C and 4D (Supplemental Figure S1).
Distributional observation of the disturbance of
borderline (feature values 2-5)
Most grade 4D specimens yielded a feature value 2 of

0.08 or greater. Accordingly, this feature 2 value

could effectively discriminate grade 4D tumors (Sup-

plemental Figure S2). Feature value 3 shows that

grade 4C is higher than the other grades, which is suit-

able for distinguishing grade 4C (Supplemental Figure

S3). The amount of feature 4 was the lowest in grade 1

(Supplemental Figure S4). Feature 5 did not show a

significant difference between any mode of invasion

and was unsuitable for discrimination (Supplemental

Figure S5).
Distributional observation of a cord-shaped
epithelial area (feature value 6)
Notably, this parameter yielded large values for grade

4C tumors; intermediate values for grades 2, 3, and 4D

tumors; and small values for grade 1 tumors. Accord-

ingly, feature value 6 could successfully distinguish



Fig. 4. Parallel coordinates based on Yamamoto-Kohama classification. The parallel coordinates indicate the relative ratio of the

feature amount on the y axis and indicate each of the feature domains (features 1-8) on the x axis, based on each of mode of inva-

sion (5 types, grades 1-4D). Cor, cord shape of tumor area as feature value 6; Cur, curvature of tumor area as feature value 2; Dir,

direction of tumor area as feature value 5; Len, length of the borderline as feature value 8; Num, number of tumor area as feature

value 1; Sha, sharp protrusion as feature value 4; Sma, small area of tumor as feature value 7; Smo, smooth protrusion as feature

value 3.
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the cordlike grade 4C tumors from the tumors other

than grade 2 (Supplemental Figure S6).
Distributional observation of the size of the
epithelial area (feature value 7)
Grade 4D tumors accounted for most cases with a fea-

ture value 7 greater than 13. The data suggest that fea-

ture value 7 is very effective for discriminating grade

4D (Supplemental Figure S7).
Distributional observation of the borderline length
(feature value 8)
Grade 1 tumors tended to yield low values for feature

value 8, and most cases with values <1000 met the cri-

teria for this grade. Therefore, feature value 8 can
Table III. Discrimination result with confusion matrix

Grade 1 Grade 2

Test data Grade 1 21 2

Grade 2 1 8

Grade 3 0 1

Grade 4C 0 1

Grade 4D 0 0
effectively discriminate grade 1 tumors (Supplemental

Figure S8).
Confusion matrix�based performance evaluation
As shown in Table III, the test data of grades 1 and 4D

yielded high classification accuracy values, whereas

the data of grade 2 yielded a low value. Among grade 1

cases, only 2 of 23 specimens were misjudged as grade

2. Among grade 4D cases, only 1 of 18 specimens was

misjudged as grade 4C. However, 4 of 12 grade 2

specimens were misjudged as other grades.

The test data show the original correct results of YK

classification determined by a clinician. The discrimi-

nation data are the results of the mode of invasion

determined by machine learning. The overall sensitiv-

ity/specificity was 87.1% (88 of 101)/96.8% (391 of
Discrimination result

Grade 3 Grade 4C Grade 4D

0 0 0

2 1 0

25 1 0

2 17 1

0 1 17



Table IV. Precision recall

Number of correct answers Discrimination number Number of matches Precision Recall F-measure

Grade 1 23 22 21 0.95 0.91 0.93

Grade 2 12 12 8 0.67 0.67 0.67

Grade 3 27 29 25 0.86 0.93 0.89

Grade 4C 21 20 17 0.85 0.81 0.83

Grade 4D 18 18 17 0.94 0.94 0.94

ORAL ANDMAXILLOFACIAL PATHOLOGY OOOO

448 Yoshizawa et al. April 2022
404), and the sensitivity/specificity for each mode of

invasion was 91.3%/97.5% in grade 1, 66.7%/95.5% in

grade 2, 92.6%/97.2% in grade 3, 81.0%/95.1% in

grade 4C, and 94.4%/98.8% in grade 4D. Importantly,

the sensitivity is clearly lower in grade 2.
Precision recall
The precision recall was calculated using a confusion

matrix and reported using F values, as shown in

Table IV. The overall F value was 0.87. In an analysis

stratified by classification, grade 2 received the lowest

F value of 0.67, whereas grades 1 and 4D received the

highest F values of 0.93 and 0.94, respectively.

Comparison of survival rates according to the YK

classifications assigned by a clinician or the machine

learning method

A comparison of the Kaplan-Meier survival curves

calculated for each YK classification revealed a signifi-

cant difference between the rates associated with the

machine learning and clinician classifications only in

grade 2 cases (Figure 5). Specifically, a grade 2
Fig. 5. Kaplan-Meier analysis of survival based on Yamamoto-Ko

sion as determined by the clinician and by machine learning are com
classification via machine learning was associated with

a lower survival rate than the same classification when

assigned by a clinician (P < .05). No other significant

differences in classification accuracy were observed

for the other YK grades (Figure 5).
DISCUSSION
OSCC is characterized by a high degree of invasion

into the surrounding tissues, as well as a high incidence

of lymph node metastasis.52 In this research, the DOI

was higher as the mode of invasion increased. There-

fore, it is essential to determine the mode of tumor

invasion in each case.

From the viewpoint of radiomics, it can be predicted

that the phenotype of medical images includes genetic

information of tumors and prognostic information of

cases.53,54 Radiomic research includes brain tumors,

lung cancer, and breast cancer as typical diseases;55-59

however, there are still very few reports on oral cancer.

Romeo et al.60 reported that a radiomic machine learn-

ing approach employing texture analysis features
hama criteria. The survival rates based on the modes of inva-

pared. *P < .05.
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extracted from primary tumor lesions and CT images

applied to primary tumor lesions could predict tumor

grade and nodal status in OSCC. In this study, we devel-

oped an automatic machine learning�based method for

differentiating OSCC cases according to the YK classifi-

cation through digital images from histopathological

specimens. Overall, this system yielded relatively accu-

rate results, as indicated by a high F value of 0.87. How-

ever, further analysis of individual grades yielded a

relatively low F value for grade 2. The number of speci-

mens in grade 2 was 13, the lowest compared with the

other grades, and this imbalance classification may have

led to poor predictive performance.

When we analyzed the survival rates according to the

YK grade, the survival rate decreased as the grade deter-

mined by the clinician increased. In contrast, however,

the machine learning�determined YK grade 2 cases had

the second-worst survival rate after grade 4D. Imbal-

anced classification is a predictive modeling challenge

because most machine learning algorithms used for clas-

sification are designed with the same number of exam-

ples in each class.61 Therefore, it is conceivable that the

lower survival rate for grade 2 is calculated on the basis

of cases that were misclassified by machine learning

compared with the actual value of grade 2. Moreover,

only two-thirds of grade 2 cases (8 of 12 cases) were

correctly assigned by the machine learning system, and

three-fourths of the mismatched cases (3 of 4 cases)

actually met the criteria of a higher grade. Grade 2 may

be particularly easy to misjudge via machine learning

because these lesions have an unclear borderline and a

cordlike shape and are easily misclassified as more inva-

sive tumors (e.g., grade 3 or 4C), even during a subjec-

tive clinician-based analysis. Grade 2 cases also

composed the smallest subpopulation in this study. Con-

sequently, machine learning became inadequate, and

many cases were misinterpreted.

Twelve cases of grade 2, which as classified by

machine learning was incorrectly interpreted in 4 of 12

cases as follows: 1 case in grade 1, 2 cases in grade 3,

and 1 case in grade 4C. The reason that grade 2 was

misinterpreted by the other mode of invasion was con-

sidered to be as follows based on a comparison of the

feature amount possessed by each mode of invasion

using the multiple comparison method of one-way

analysis of variance with the Bonferroni correction.

First, the reason that grade 2 was misinterpreted as

grade 1 may be that the number of epithelial regions

(feature 1) was extremely close between grade 1 and

grade 2, making it difficult to distinguish between

them. Second, the reason that grade 2 was misinter-

preted as grade 3 may be that not only the number of

epithelial regions, represented by feature 1, but also

feature 4, which indicates the sharpness of the protru-

sion of the tumor area, and feature 8, which indicates
the length of the borderline, were similar and were

therefore difficult to distinguish. Third, the reason that

Grade 2 was misinterpreted as Grade 4C may be Fea-

ture 6, which indicates cord-like features, was not sig-

nificantly different between Grade 2 and Grade 4C, but

was significantly different between Grade 2 and the

other modes of invasion (Grade 1, Grade 3, and Grade

4D), making it impossible to distinguish between

grade2 and grade 4C.

This study was limited because HE-stained images

were primarily not used, despite the desirability of such

an approach from the perspectives of cost and conve-

nience. However, because this research involved the

challenge of a first approach to this technology, we per-

formed IHC to detect claudin-7 and uPA/uPAR, which

specifically stains OSCC tumor cells, to further clarify

the borderline between the tumor and the stroma and

ensure clear binary images.15,62 The use of HE-stained

specimens alone would have made it particularly diffi-

cult to capture the sparsely scattered tumor cells in the

stromal tissue of grade 4D specimens. However, the

inclusion of these immunohistochemical analyses better

facilitated the detection of tumor cells even in these

grade 4D cases.15 In the future, we need to ensure that

machine learning can detect bivalence using more

straightforward and more useful HE-stained samples.

To improve the classification accuracy using deep learn-

ing, it is necessary to include a substantially high num-

ber of cases; however, we did not have the required

number of cases. Therefore, it was necessary to create a

classifier in a limited number of cases captured by expert

clinicians. The good overall F value suggests that good

feature values were extracted by them. Moreover, this

approach might also be useful for constructing an auto-

matic YK classification discrimination method, although

the accuracy must be improved.

The strengths of this study are that the ROI was set

using WSI, which is still uncommonly used in oral can-

cer research. In assessing the mode of invasion, it is

problematic to have differences in the evaluation of

subjective visual findings among raters. However, in

this study, the advocate guided the selection method

and characteristics to the supervised images, and thus

the discrepancy between raters was minimized.

Although pathologic imaging studies using WSI have

become the main method for classifying pathologic tis-

sues by machine learning, there are still very few

reports of such studies using WSI in oral cancer.63 A

few studies have been reported using WSI to classify

whether a tumor is cancerous in oral cancer,63,64 but no

study has yet been reported to classify the nature of

cancer as in this study. The reason for this may be that

unlike cancers of other tissues, oral cancer contains

hard tissues such as the teeth and jaw in the tissue spec-

imen, so the tissue specimen itself is prone to wrinkles,
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folds, and tears, resulting in a low-quality specimen

that is prone to errors when scanning. Similarly, in this

study, tongue cancer was easy to evaluate by WSI,

whereas cancer involving the jaw was difficult to eval-

uate by WSI. It is important to prepare good-quality

histopathological specimens for oral cancer in order to

conduct research using WSI.

The accuracy of machine learning could potentially

be improved by dramatically increasing the number of

cases. Although many pathologic imaging findings and

clinical information can be obtained from The Cancer

Genome Atlas database, this information is provided in

a pathologic image format, and the contents are not

uniform.65 Consequently, it is difficult to apply these

data in a machine learning setting. In the future, it will

be necessary to collect a larger number of cases

through a multicenter collaboration. Furthermore,

increasing numbers of patients will benefit when

clinicians and pathologists use a more effective AI

system. In Japan, there are few pathologists, and, in

many cases, there are no in-hospital pathologists;

therefore, intraoperative diagnosis may not be possi-

ble, and accurate surgery and treatment may not be

possible. Ideally, we would like to apply this

research to clinical practice as soon as possible and

use the computer-aided diagnosis system for the

diagnosis of oral cancer. However, machine learning

requires careful judgment and caution because it

leaves the decision making and prediction related to

medical ethics to the machine.

In this study, we developed an automatic machine

learning�based classifier system to discriminate the

mode of invasion of OSCC. Notably, this classifier was

confirmed to generate decisions similar to those made

by a clinician. Our results suggest that an automatic

medical diagnostic imaging system could feasibly and

accurately determine the mode of OSCC invasion. We

should continue to cooperate with the field of AI analy-

sis to develop diagnostic tools in accordance with med-

ical ethics.
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