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Cell genomics and immunosuppressive biomarker expression
influence PD-L1 immunotherapy treatment responses in
HNSCCda computational study

Amber M. Bates, BS,a Emily A. Lanzel, DDS, MS,b Fang Qian, PhD,a,c Taher Abbasi, ME, MBA,d

Shireen Vali, PhD,d and Kim A. Brogden, PhDa

Objectives. Programmed deatheligand 1 (PD-L1) expression is correlated with objective response rates to PD-1 and PD-L1

immunotherapies. However, both immunotherapies have only demonstrated 12%-24.8% objective response rates in patients

with head and neck squamous cell carcinoma (HNSCC), demonstrating a need for a more accurate method to identify those

who will respond before their therapy. Immunohistochemistry to detect PD-L1 reactivity in tumors can be challenging, and

additional methods are needed to predict and confirm PD-L1 expression. Here, we hypothesized that HNSCC tumor cell

genomics influences cell signaling and downstream effects on immunosuppressive biomarkers and that these profiles can

predict patient clinical responses.

Study Design. We identified deleterious gene mutations in SCC4, SCC15, and SCC25 and created cell lineespecific

predictive computational simulation models. The expression of 24 immunosuppressive biomarkers were then predicted and

used to sort cell lines into those that would respond to PD-L1 immunotherapy and those that would not.

Results. SCC15 and SCC25 were identified as cell lines that would respond to PD-L1 immunotherapy treatment and SCC4 was

identified as a cell line that would not likely respond to PD-L1 immunotherapy treatment.

Conclusions. This approach, when applied to HNSCC cells, has the ability to predict PD-L1 expression and predict PD-1- or

PD-L1-targeted treatment responses in these patients. (Oral Surg Oral Med Oral Pathol Oral Radiol 2017;124:157-164)
Programmed deatheligand 1 (PD-L1) is a 33.28-kDa
protein on the surface of many immune and nonim-
mune cells and serves as a co-stimulatory molecule to
regulate immune responses.1-3 Overexpression of
PD-L1 on tumor cells skews anti-tumor immunity by
impeding anti-tumor CD8þ T-cell function through
inhibition of T-cell proliferation, reduction of T-cell
survival, inhibition of cytokine release, and promotion
of T-cell apoptosis.4,5

PD-L1 has become an important marker in immu-
notherapy, and progress has been made to show that
PD-L1 is an important clinical predictor of immuno-
therapy treatment success. Unfortunately, progress has
lagged in the development of new methods to
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adequately detect PD-L1 expression on cells and
in tumors. The expression of PD-L1 in tumors is
currently determined by antibody-based tests,
including immunohistochemistry (IHC),6 quantitative
immunofluorescence,6 and antibodies conjugated with
DOTAGA and radiolabeled with copper-64 for posi-
tron emission tomographyecomputed tomography
imaging.7 In IHC, PD-L1 levels of reactivity above a
1%-5% threshold for PD-L1þ tumors are used for
selecting patients for anti-PD-1 or anti-PD-L1 immu-
notherapy treatment.8,9 Unfortunately, anti-PD-1 and
anti-PD-L1 immunotherapy treatments have only
demonstrated 12%-24.8% objective response rates
(Table I). Several other studies are currently ongoing.10

Using additional methods to detect PD-L1 expression
could result in higher PD-L1 detection rates and higher
patient objective response rates.

In this study, we hypothesized that HNSCC tumor
cell genomics influences cell signaling and downstream
Statement of Clinical Relevance

This study reports translational research with clinical
applications showing the feasibility of creating
computational models. Our approach has the ability
to accurately predict programmed deatheligand 1
(PD-L1) expression, affirm immunohistochemistry
results, and determine PD-1e or PD-L1etargeted
treatment responses in patients with head and neck
squamous cell carcinoma.
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Table I. Objective response rates in HNSCC trials
assessing antibodies against PD-1 and PD-L1

Checkpoint inhibitor
study (Reference)

Objective response
“responder rate”
(No. of patients)

Calculated
“nonresponder

rate”

PD-1
Pembrolizumab
(MK-3475)9,49

19.6% (56) 80.4%

Pembrolizumab
(MK-3475)50

24.8% (150) 75.2%

Nivolumab
(BMS-936558)9,17,50

Study is ongoing

Pidilizumab (CT-011)9,17 Study is ongoing
PD-L1

MPDL3280 A51 20.5% (122) 79.5%
MEDI473652 14.0% (22) 86.0%
Durvalumab
(MEDI4736)50,53

12.0% (62) 88.0%

HNSCC, head and neck squamous cell carcinoma; PD-1, programmed
death 1; PD-L1, programmed deatheligand 1.
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effects on the expression of PD-L1, chemokines, and
immunosuppressive biomarkers and that these profiles
can be used to predict clinical responses in patients.

To show this, we first identified deleterious gene
mutation profiles in the American Type Culture
Collection cell lines SCC4, SCC15, and SCC25. Then,
we annotated these profiles into a cancer network to
create cell lineespecific predictive computational
simulation models. Cell-specific models were used to
predict the expression of 24 chemokines and immuno-
suppressive biomarkers. The profile results were finally
used to sort cell lines into those that would respond to
PD-L1 immunotherapy and those that would not. This
approach would have the ability to predict PD-L1
expression, affirm IHC results, and accurately deter-
mine PD-1e or PD-L1etargeted treatment success.

MATERIAL AND METHODS
HNSCC cell line authentication
This was a predictive computational study, and cell
lines were not used directly in this study.
Cell line mutational profiles
SCC cell lineespecific mutational profiles were first
created, as recently described.11 Next-generation
sequencing information containing mutations and
copy number variations were taken from the cBioPortal
for Cancer Genomics database12,13 and from the
Sanger sites for SCC4 (http://www.cbioportal.org/case.
do?sample_id¼SCC4_UPPER_AERODIGESTIVE_
TRACT&cancer_study_id¼cellline_ccle_broad, http://
cancer.sanger.ac.uk/cell_lines/sample/overview?id¼910
904); SCC15 (http://www.cbioportal.org/case.do?
sample_id¼SCC15_UPPER_AERODIGESTIVE_
TRACT&cancer_study_id¼cellline_ccle_broad, http://
cancer.sanger.ac.uk/cell_lines/sample/overview?id¼910
911); and SCC25 (http://www.cbioportal.org/case.do?
sample_id¼SCC25_UPPER_AERODIGESTIVE_TRA
CT&cancer_study_id¼cellline_ccle_broad, http://cancer.
sanger.ac.uk/cell_lines/sample/overview?id¼910701).

Exomes from each cell line were examined for
deleterious gene mutations, as recently described,11

using cancer mutation effect prediction algorithms,
including FannsDB,14 SIFT,15 Polyphen,16

FATHMM,14 Mutation Assessor,17 and PROVEAN.18

Final results after sifting the gene mutations through
these algorithms were recorded as an effect of
unknown significance, of neutral significance, or
deleterious to gene function.11

Simulation models
An extensive cancer network was used to create pre-
dictive computational simulation models of SCC4,
SCC15, and SCC25, as recently described.11 This
network was created from published reports on cell
receptors, signaling pathways, pathway signaling
intermediates, activation factors, transcription factors,
and enzyme kinetics (Figure 1). Information on gene
functionality and links between different genes,
proteins, and pathways were manually researched,
analyzed, curated, and aggregated to construct the
integrated network maze. This approach modeled
proteineprotein interactions at each step in a
signaling pathway using ordinary differential
equations (ODEs)19 to predict specific pathway
output.20 Pathway proteineprotein interactions at each
specific node were modeled as Michaelis-Menten
equations that contained the reaction, enzyme, initial
concentrations of protein intermediate reactants, and
parameters of the reaction like Ka, Km, kcat, Vmax,
etc. ODEs were solved at each step using the Radau
method.21 Modeled events included, but were not
limited to, interactions at the cell surface (e.g.,
binding of agonists to receptors, etc.), metabolic and
cell signaling pathways (e.g., signal pathway events,
cross-talk interactions among pathways, feedback con-
trol, etc.), activation and regulation of genes (e.g.,
activation links of transcription factors, etc.), and
intracellular processes (e.g., proteasomal degradation,
endoplasmic reticulum stress, oxidative stress, DNA
damage and repair pathways, and cell cycle pathways).
Time-dependent changes in signaling pathway fluxes of
biologic reactions were determined using modified
ODEs solved with a proprietary solver. Input, output,
and interactions in this network were validated using
internal control analysis checks on predictive expres-
sion. Analyses included assessing the effects of
pathway molecule overexpression or knockdown on
predictive pathway responses; effects of drugs on
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Table II. The predicted expression of chemokines
compiled into a DC infiltration index

Chemokine
SCC4
(%)

SCC15
(%)

SCC25
(%)

CCL11 �3.61 5.84 3.61
CCL20 �0.26 7.06 4.73
CCL2 �10.22 18.12 7.62
CCL3 �2.10 2.54 0.65
CCL4 21.53 25.58 4.44
CCL5 �2.91 3.53 1.95
CCL7 �3.69 6.73 4.08
CX3 CL1 �0.79 5.57 3.45
CXCL14 �0.89 �0.83 �1.16
DC infiltration

index
�2.95 74.14 29.37

DC, dendritic cell; w.r.t., with respect to.
The percent change was calculated for each chemokine as ([D � C]/
C) � 100, where C is the predicted baseline value of the non-
tumorigenic control (mM), and D is the predicted disease value of the
biomarker obtained in the cell lineespecific network (mM). The
chemokines were given weightage to normalize the total to 1.
The index was calculated to be the sum of each prediction percentage
change � weightage.

Fig. 1. The schema showing the creation of SCC4-, SCC15-,
and SCC25-specific predictive computational simulation
models. Information from manual review of new and pub-
lished research was used to form the cancer network. Data
was organized into signaling, metabolic, and epigenetic
pathways to form the basis of the mathematical modeling of
the cancer network. Nontransformed head and neck squamous
cell carcinoma (HNSCC) models in the cancer network
(e.g., models not containing cell lineespecific deleterious
gene mutations) were simulated to reach a control baseline.
Cell lineespecific deleterious gene mutation profiles were
converted into a computational format and annotated into the
HNSCC cancer network and simulated to create SCC4-,
SCC15-, and SCC25-specific simulation models. These
models were used to predict the expression of 24 chemokines
and immunosuppressive biomarkers for SCC4, SCC15, and
SCC25.
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predictive pathway responses; and activation, regula-
tion, and cross-talk interactions among pathway
intermediates on predictive pathway responses.

HNSCC-specific models in the cancer network were
created for each cell line. At the initial step, the models
did not contain cell lineespecific deleterious gene
mutation profiles and were simulated to reach a ho-
meostatic steady state, which served as the control
baseline for the biomarkers of interest. Then, cell
lineespecific deleterious gene mutation profiles were
converted into a computational format and annotated
into the HNSCC cancer network, simulated to induce
the cell lineespecific cancer disease states, and used to
predict the expression of 24 chemokines and immuno-
suppressive biomarkers. At the network level, muta-
tions of oncogenes were represented as gain of function
at the activity level, and mutations of tumor suppressor
genes were represented as loss of function at the
activity level unless explicit functionality of the muta-
tion was known from published studies. Copy number
variations, such as amplifications and deletions, were
represented as overexpression or deletion of function at
the expression level. The time required to achieve a cell
lineespecific network varied, depending on the
complexity of the profile definition.

Immunosuppressive biomarkers
The predicted expression of 24 biomarkers were
determined, including PD-L1, 9 chemokines capable of
trafficking dendritic cells into the tumor microenvi-
ronment22,23 (Table II; Figure 2), and 14 biomarkers
that can act as immunosuppressive mediators
facilitating the ability of cancer cells to escape normal
tumor surveillance (Table III). Expression was
reported as percent change (with respect to control)
and calculated as ([D - C]/C) � 100, where C is the
absolute value of the nontumorigenic baseline control
(mM), and D is the absolute value of the biomarker
obtained in the cell lineespecific cancer state network
(mM). Chemokine percent expression values were
given weightage so as to normalize the total to 1.
A dendritic cell infiltration index was then calculated
to be the sum of each prediction percentage
change � weightage (Table II).

Predicted response to PD-L1 immunotherapy
The predicted expression of 24 chemokines and
immunosuppressive biomarkers were used to sort cell
lines into those that would respond to PD-L1 immu-
notherapy and those that would not (Figure 2).
Predetermined thresholds were assigned to each step.



Fig. 2. The predicted expression profiles of 24 chemokines and immunosuppressive biomarkers for SCC4, SCC15, and SCC25
were used in a decision tree format to sort cell lines into those that would likely respond to PD-L1 immunotherapy treatment and
those that would not. SCC4 had 11.14% programmed deatheligand 1 (PD-L1) expression and was identified at step 1 as a cell line
that would not likely respond to PD-L1 immunotherapy treatment. SCC15 had a dendritic cell (DC) infiltration index of 74.11%
and was identified at step 2 as a cell line that would likely respond to PD-L1 immunotherapy treatment. SCC25 had immuno-
suppressive biomarker expression (ranging from �4.96% for Fas ligand gene [FASLG] to 42.45% for interleukin-6 [IL-6]) with
<91.38% PD-L1 expression plus 5% and was identified at step 3 as a cell line that would likely respond to PD-L1 immunotherapy
treatment.
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In step 1, a 29% PD-L1 expression threshold was
used. Cell lines with PD-L1 expression <29% were
classified as PD-L1 immunotherapy nonresponders.
Cell lines with PD-L1 expression >29% moved on to
the next step.

In step 2, both 20% and 60% dendritic cell infiltra-
tion index thresholds were used. Cell lines with a
dendritic cell infiltration index <20% were classified as
PD-L1 immunotherapy nonresponders. Cell lines with a
dendritic cell infiltration index >60% were classified as
PD-L1 immunotherapy responders. Cell lines with a
dendritic cell index >20% and <60% moved on to the
final step.

In step 3, the cell lineespecific PD-L1 expression
with a margin of >5% threshold was used. Cell line
immunosuppressive biomarker predictions greater than
the cell lineespecific PD-L1 expression with a margin
of >5% were classified as PD-L1 immunotherapy
nonresponders. Cell line immunosuppressive biomarker
predictions less than the cell lineespecific PD-L1
expression with a margin of >5% were classified as
PD-L1 immunotherapy responders.

RESULTS
Predictions of biomarkers
The predicted expression of 24 chemokines and
immunosuppressive biomarkers varied among the
3 cell lines (Tables II and III). PD-L1 expression
varied from 11.14% (SCC4) and 49.29% (SCC15) to
91.38% (SCC25) (Table III). The percentage changes
of PD-L1 expression with respect to control base-
lines were previously verified against observed PD-L1
expression by using enzyme-linked immunosorbent
assay, IHC, and flow cytometry on the same cells
grown in culture.11

The expression of chemokines for SCC4 ranged
from �10.22% for CCL2 to 21.53% for CCL4
(Table II). In 8 of 9 chemokine predictions, the



Table III. The predicted expression of PD-L1,
dendritic cell infiltration index, and immunosuppres-
sive biomarkers from simulation models of SCC4,
SCC15, and SCC25

Markers and index SCC4 (%) SCC15 (%) SCC25 (%)

PD-L1* 11.14 49.29 91.38
Dendritic cell infiltration

index
�2.93 74.11 29.38

Immunosuppressive biomarkers
TGF-b1 5.66 58.8 24.38
IDO1 17.29 2.75 4.97
IL-6 �8.49 406.78 42.45
VEGFA 44.18 78.23 26.78
TDO2 2.74 2.39 18.29
PGE2 39.04 39.19 26.97
IL-10 2.01 46.53 26.09
LGALS9 �49.72 5.15 10.82
FASLG �1.05 �2.98 �4.96
CD47 5.36 14.39 8.21
CTLA-4 27.89 80.37 10.38
PDCD1 LG2 3.6 7.89 5.65
Ganglioside GM3 �4.39 48.69 36.44
Ganglioside GD2 �4.39 48.69 36.44

PD-L1, programmed deatheligand 1; TGF, transforming growth
factor; IDO1, indoleamine 2,3-dioxygenase 1; IL, interleukin;
VEGFA, vascular endothelial growth factor A; TDO2, tryptophan
2,3-dioxygenase 2; PGE2, prostaglandin E2; LGALS9, lectin,
galactoside-binding, soluble, 9; FASLG, fas ligand gene; CTLA-4,
cytotoxic T-lymphocyte-associated protein 4; PDCD1 LG2, Pro-
grammed Cell Death 1 Ligand 2.
Values are listed as percent expression with respect to controls.
*The percentage changes of PD-L1 expression were previously re-
ported and verified against observed PD-L1 expression by enzyme-
linked immunosorbent assay, immunohistochemistry, and flow
cytometry on the same cells grown in culture.11
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percentage changes were lower than in the control
baselines. The percentage changes for SCC15 ranged
from �0.83% for CXCL14 to 25.58% for CCL4. The
percentage changes for SCC25 ranged from �1.16%
for CXCL14 to 7.62% for CCL2. These variations
resulted in differences in the predicted dendritic cell
infiltration index values (Table II). These index values
varied from �2.93% (SCC4) and 29.36% (SCC25) to
74.11% (SCC15) (Table III).

The expression of immunosuppressive biomarkers for
SCC4 ranged from �49.72% for LGALS9 (Lectin,
Galactoside-Binding, Soluble, 9) to 44.18% for vascular
endothelial growth factor (VEGF) A (Table III). The
percentage changes of immunosuppressive biomarkers
for SCC15 ranged from �2.98% for Fas ligand gene
(FASLG) to 406.78% for interleukin (IL)-6 and the
percentage changes for SCC25 ranged from �4.96%
for FASLG to 42.45% for IL-6.
Predicted response to PD-L1 immunotherapy
The predicted expression of 24 chemokines and
immunosuppressive biomarkers for SCC4, SCC15, and
SCC25 were used to sort cell lines into those that would
respond to PD-L1 immunotherapy treatment and those
that would not (Figure 2).

SCC4 had 11.14% predicted PD-L1 expression,
SCC15 had 49.29% predicted PD-L1 expression, and
SCC25 had 91.38% predicted PD-L1 expression
(Table III). In step 1, SCC4 was classified as a PD-L1
immunotherapy nonresponder. SCC15 and SCC25 cell
lines moved on to the next step.

SCC15 had a 74.11% predicted dendritic cell infil-
tration index, and SCC25 had a 29.38% predicted
dendritic cell infiltration index (Tables II and III). In
step 2, SCC15 was classified as a PD-L1 immuno-
therapy responder. SCC25 cell line moved on to the
next step.

SCC25 had an immunosuppressive biomarker
expression profile ranging from �4.96% for FASLG to
42.45% for IL-6 (Table III). All of these profile
predicted values were less than the 91.38% PD-L1
expression plus 5%. In step 3, SCC25 was classified
as a PD-L1 immunotherapy responder.
Predicted pathway comparisons
In our previous study, deleterious gene mutations
involved in the expression of PD-L1 in SCC4, SCC15,
and SCC25 cell lines were mapped to unique signaling
pathways.11 To show that cell genomics influenced
immunosuppressive biomarker expression profiles, we
mapped mutations to unique signaling pathways.
Deleterious gene mutations involved in the expression
of PD-L1, 9 chemokines, and 14 immunosuppressive
biomarkers for SCC4 were mapped to signaling net-
works TP53, CDK6, CCND1, and NF1. Mutations in
SCC15 were mapped to signaling networks EGFR,
PIK3 CB, DUSP22, and MAP3 K1, and mutations in
SCC25 were mapped to signaling networks TP53,
CDKN2 A, and LAMTOR5.
DISCUSSION
Recently, we developed an approach to determine the
expression levels of PD-L1 in SCC4, SCC15, and
SCC25 cell lines.11 The percentage changes of PD-L1
expression were verified against observed PD-L1
expression using enzyme-linked immunosorbent
assay, IHC, and flow cytometry on the same cells
grown in culture.11 In this study, we extended that
methodology and determined the expression levels of
24 chemokines and immunosuppressive biomarkers.
The expression levels of individual chemokines were
converted into an index of dendritic cell infiltration.
All of these values were then used to show that
SCC15 and SCC25, cell lines originally from patients
with HNSCC, would likely respond to PD-L1 immu-
notherapy treatment and that SCC4, a cell line from a
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patient with HNSCC, would not likely respond to
PD-L1 immunotherapy treatment. These differences
were based on cell genomics and immunosuppressive
biomarker expression profiles from each cell line
influenced by cell specific mutations, copy number
variations, and methylation data.

Predicting responses to PD-L1 immunotherapy
treatment of patients with HNSCC is generally deter-
mined using IHC to identify PD-L1 reactivity in tu-
mors. This reactivity, if above predetermined
thresholds, is then used to select patients for PD-1 or
PD-L1 immunotherapy treatment.8,9,24 However, IHC
to detect PD-L1 has come under some scrutiny and can
be imprecise.6,25-28 IHC is complicated, in part, by the
variability in available reagents,28,29 and this variability
presents challenges for using PD-L1 reactivity in IHC
alone as both a diagnostic marker and as a clinical
predictor of PD-L1 immunotherapy treatment success.

Complex input from tumor mutations, inflammatory
cells, and immunosuppressive biomarkers likely con-
tributes to the production and regulation of PD-L1.29-31

Many of these concepts were included in our choice of
a multifaceted biomarker system. These concepts were
also included in the cut-off points used to predict
PD-L1 immunotherapy responder status in the decision
tree (Figure 2). The 24 biomarkers (Tables II and III)
were not chosen arbitrarily, but for their suggested
roles in tumor progression. PD-L1 was included
because it is expressed in 46%-100% of human
HNSCC biopsy specimens across multiple primary
sites.32

Decision cut-offs were established but not limited to
those included in Figure 2. In a recent study of
unpublished results,33 cut-offs for the predicted
PD-L1 expression (step 1), the predicted dendritic cell
infiltration index (step 2), and the predicted immuno-
suppressive biomarker profile (step 3) were used to
predict PD-1 immunotherapy responder status of pa-
tients with nonesmall cell lung cancer. The decision
tree was found to be robust with built-in redundancy.
Basing the PD-1 drug responder status on 3 separate
predicted criteria allowed a PD-1 immunotherapy
responder/nonresponder not identified at one step to be
identified at a later step. In addition, the thresholds were
specific. Using nonesmall cell lung cancer as the
model,34 decreasing the PD-L1 expression cut-off from
29% to 25% identified 6 nonePD-1 responders as
opposed to the identification of 9 PD-1 nonresponders
at 29%. Increasing the PD-L1 expression cut-off from
29%-35% identified more false negatives, and setting
the PD-L1 drug responder status at 35% identified up to
13 PD-1 nonresponders (3 PD-1 responders were
identified as PD-1 nonresponders).

Altered chemokine function in HNSCC promotes
cell survival, enhanced proliferation, neovascularization,
motility, and metastasis in multiple tumor types.35

Therefore, 9 predicted chemokines were used to
generate an index representative of the trafficking of
dendritic cells into the tumor microenvironment.22,23

Transforming growth factor-b from tumor cells impairs
the function of dendritic cells and T cells needed for
tumor recognition and antitumor responses.36,37 Trans-
forming growth factor-b is overexpressed in HNSCC
development and decreases expression of interferon-
gamma (IFN-g) on cytotoxic T lymphocytes.36-38

Indoleamine 2,3-dioxygenase (IDO) 1, a tryptophan
degrading enzyme, inhibits the proliferation of lympho-
cytes; acts on natural killer (NK) cells to downregulate
receptors and induces NK-cell apoptosis; and acts on
cytotoxic T cells to induce cell cycle arrest, decrease
activation, and apoptosis.39-43 IDO is expressed in a
variety of human cancers; in HNSCC, IDO has been
suggested to play a role in IFN-geinduced apoptosis.44

Tryptophan 2,3-dioxygenase 2, another tryptophan-
degrading enzyme involved in immune resistance, is
frequently expressed in human cancers.39 In breast
cancer, tryptophan 2,3-dioxygenase 2 is highly over-
expressed and is believed to contribute to tumor pro-
gression and poor prognosis.45 IL-6 is involved in
inflammatory processes indicative of tumor prolifera-
tion, has immunosuppressive effects on dendritic cells,
and prevents maturation.37,46 Expression of IL-6 in
HNSCC cells has been suggested as a predictive factor
of poor response to chemoradiotherapy.47 VEGF is a
marker for tumor invasion and metastasis and can be
detected in HNSCC.37 It promotes immune tolerance
and angiogenesis.36 Higher levels of IL-6 and VEGF
are produced in late-stage HNSCC cell lines compared
with early-stage cell lines and in metastatic cell lines
compared with nonmetastatic cell lines.37 Prostaglandin
E2 (PGE2) suppresses NK-cell function primarily
through the PGE2 receptor EP4.

48 IL-10 is found in
elevated levels in the saliva of patients with HNSCC
and may impair dendritic cell function and protect
tumor cells from cytotoxic T cells.38,49,50 LGALS9
encodes for galectin-9, which is associated with
metastasis and immunosuppression and found in
elevated levels of lung, kidney, liver, and breast carci-
nomas.51 Galectin-9 has been suggested to play a role
in tumor cell evasion by inducing apoptosis in T helper
1 cells and cytotoxic T cells. It mediates T-cell
dysfunction and T-cell senescence.52 FASLG triggers
Fas-mediated apoptosis and is overexpressed in
various types of tumors.53 Tumor cells can express
FASLG and induce apoptosis in T cells expressing
Fas, allowing for tumor progression. CD47 represses
dendritic cell phagocytosis, maturation, and
production of IFN-g.54 Cytotoxic T-lymphocyte-
associated protein 4 restrains the adaptive immune
response of T cells toward tumor-associated
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antigens.55-57 Programmed Cell Death 1 Ligand 2 en-
codes for PD-L2 (programmed death 1 ligand-2), which
is expressed by tumor cells to bind PD-1 on effector T
cells thereby suppressing antitumor cellular immunity
similar to PD-L1.58 PD-L2 is commonly expressed in
cervical SCC. Gangliosides GM3 and GD2 impair
dendritic cell differentiation from monocytes and
induce their apoptosis.59

CONCLUSIONS
In summary, we used a goal-orientated, translational
approach to create HNSCC-specific simulation models
to predict PD-L1 immunotherapy outcomes using
deleterious gene mutation profiles from 3 American
Type Culture Collection SCC cell lines of head and
neck origin. This approach was modeled and has the
potential to complement PD-L1/PD-1-targeted drug
responder status predictions determined by the current
methods used. In future studies, the predicted responder
status will be validated in clinical trials for HNSCC,
where cell lineespecific deleterious gene mutations,
PD-L1 IHC reactivity of tumors, and clinical outcomes
are available. Simulation models have a strong potential
for future applications. These models will be able to
complement IHC results or provide effective where
IHC is unfeasible, identify factors that influence PD-L1
expression, and serve as a clinical decision support
system to classify patients into those that would
respond to PD-L1 immunotherapy and those that would
not. The last-mentioned application could be used
shortly after cancer diagnosis and just before cancer
treatment to facilitate selection of appropriate therapies
based on a patient’s deleterious gene mutation profile.
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