原文題目(出處):	Condylar hyperplasia and facial asymmetry : Report of Five				
	cases. J Maxillofac Oral Surg 2011;10:50-6				
原文作者姓名:	Dicya Mehrotra, Satish Dhasmana, Mala Kamboy, Gautam				
	Gambhir				
通訊作者學校:	King George's Medical University				
報告者姓名(組別):	莊涵芝 Intern F組				
報告日期:	101.02.17				

內文:

Abstract

 Condylar hyperplasia of mandible is overdevelopment of condyle, unilaterally or bilaterally, leading to facial asymmetry, mandibular deviation, malocclusion and articular dysfunction.

Introduction

- Condylar hyperplasia normally occurs in <u>mid teens</u> with increasing deformity until cessation of growth.
- Prominent features
 - enlarged mandibular condyle
 - elongated condylar neck
 - outward bowing and downward growth of body and ramus of mandible on affected side
 - causing fullness of face on that side and flattening of face on the contralateral side.
- If deformity occurs
 - Before completion of growth—slanted occlusal plane
 - After completion of growth—posterior open bite

- Unilateral condylar hyperplasia must be differentiated from other states of overdevelopment
 - Hemifacial hypertrophy
 - Unilateral macrognathia
 - Laterognathia
 - Chondroma
 - Osteochondroma

Materials and methods

- ♦ A total of <u>five patients</u> with the primary complaint of <u>facial asymmetry</u> due to condylar hyperplasia who visited the OPD of Oral and Maxillofaical Surgery, CSMMU, Lucknow between 2005 and 2006 were randomly selected
- Informed consent was taken prior to their inclusion in the study
- Age, sex and a detailed history of the mode of onset and duration were recorded
- Any obvious <u>facial asymmetry</u>, <u>scar mark</u> or <u>deviation of chin</u> were examined
- <u>Radiological</u> assessment of both the joints was carried out with orthopantomograms and CT scan.
- Scintigraphy using 99mTc-MDP was used to distinguish the growing condyle

from non-growing one and to assess whether there was still phase of growth

- The joint was exposed through Al-Kayat Bramley incision and a high condylar shave or condylectomy as planned, was carried out with the help of surgical bone cutting device. Specimen was sent for histopathological examination.
- Saggital split osteotomy was planned and performed bilaterally, when gross asymmetry existed along with protrusion, and unilaterally, in case of minor discrepancies.

Results

- Mean age: 22.8 years
- Trauma was the most common etiology
- Condylar hyperplasia causes facial asymmetry followed by midline shift, protruded chin, contralateral crossbite, maxillary cant

Case 1:Preoperative front view

Post operative front view Case 2: Preoperative front view Post operative front view

Radiographic examination: change in shape of condylar head, elongated condylar neck, bowing of inferior border, hemimandibular enlargement

- Treatment : condylectomy, high condylar shave (with good intercuspal dental relationship), bilateral sagittal split osteotomy (with gross facial asymmetry and prognathic mandible), unilateral sagittal split osteotomy
- Histopathological examination : thickened irregular bony trabeculae, uninterrupted layer of undifferentiated mesenchymal cells, hypertrophic cartilage, islands of chondrocytes in subchondral trabecular bone, increased thickness of cartilaginous layer

Patients were <u>followed up</u> regularly in their post-operative phase for a period of <u>2 years</u>

Table 1 Demographic data, clinical features and treatment done

S no.	Age	Sex	Side	History	Asymmetry	Enlarged condyle			Hemimandibular enlargement	Maxillary cant	Occlusion	Treatment
1	42	М	Rt	Trauma	\checkmark	\checkmark	Х	x	Х	Х	Crossbite	Condylectomy
2	16	F	Lt	Trauma	\checkmark		\checkmark		\checkmark	Х	Crossbite	Condylectomy
3	17	F	Lt	Trauma	\checkmark			х	х	\checkmark	x	High condylar shave
4	18	М	Rt	Trauma	\checkmark		\checkmark	\checkmark	x	Х	Crossbite	Condylectomy + bilateral sagittal split osteotomy
5	21	М	Rt	x	\checkmark		x	x	\checkmark	x	Crossbite	Unilateral sagital split osteotomy

Review of literature

- Two types of deformity
 - Increased <u>anteroposterior</u> mandibular length ♦ Buccal crossbite
 - Increased vertical ramus height
 - Tilted occlusal plane
 - Lateral open bite
 - Resulting in facial asymmetry and reduced opening on affected side
- Additional factors : hormonal influences, hypervascularity, heredity, infection, trauma
 - Invariably unilateral
- Diagnostic tools

 \checkmark

- Sequential study models, radiological and scintigraphic methods
 - For diagnosis and monitoing macroscopic aspects
- Lateral and posteroanterior cephalograms

• For possible differences in size, shape, and length of the R/L side

- Micromorphology
 - Thickened and irregular bony trabeculae
 - Large volume of trabecular bone
 - Higher percentage of surfaces covered in osteoids
- Histologically
 - Uninterrupted layer of undifferentiated germinating mesenchymal cells, hypertrophic cartilage, islands of chondrocytes in the subchondral trabecular bone
 - Increased cartilaginous layer
- Isotope bone scan
 - Assess *growth activity* in the mandibular condyle
 - Distinguish <u>normal bone growth</u> from <u>increased activity</u> that may be the cause of the asymmetry
- ♦ SPECT
 - More sensitive and accurate in detecting abnormal activity
- Bone scintigraphy
 - Detect if the pathology is in an active phase or not

• PET Scan

Successfully used in the assessment and management of condylar haperplasia

- Treatment
 - Active growth—condylectomy
 - Growth stopped—orthodontics & surgical mandibular repositioning
 - Greatly increased height of the mandibular body—reduce the inferior border

Discussion

- Treatment depends on age, degree of deformity and hypofunction
- The basic consideration in the management of facial asymmetry secondary to condylar hyperplasia must include <u>control of the growth process</u> to allow more <u>balanced facial development</u>
 - Done by high condylectomy or condylar shave in actively growing cases
- Surgery
 - Condylectomy
 - <u>Active change</u> in the hyperplastic condyle
 - Radiographic or clinical suggestions of <u>pathologic conditions</u> such as chondroma, osteoma, or other neoplasm
 - Restores symmetry
 - ♦ Allows histological examination
 - Unilateral ramus surgery
 - When neoplasm is not suspected
 - Shorten the affected ramus as condylectomy does
 - Vertico-sagittal ramus osteotomy—Useful particularly to treat vertical discrepancies
 - Osteotomy
 - If condyle is mature and stable, with normal function and cessation of growth
 - Compensatory growth has occurred
 - E.g. Spatial correction with Lefort Osteotomy
 - ✓ A slightly enlarged condyle that functions normally is left intact, and it may later remodel
- Zhonghua investigated the TMJ function of the condylar hyperplasia patients after condylectomy
 - Dramatic improvement in <u>facial asymmetry</u>
 - <u>New cortex</u> formed
 - <u>TMJ function</u> was improved
 - ✓ Hence Condylectomy was an effective method
- Patients with active condylar hyperplasia treated with <u>high condylectomy</u>, <u>articular disc repositioning</u>, and orthognathic surgery have stable, predictable outcomes compared with those treated with <u>orthognathic surgery</u> alone
- Symmetry in most patients with condylar hyperplasia
 - <u>Mandibular arch form</u> remains approximately symmetric with the maxillary arcn
 - No major compensatory <u>alveolar modifications</u>
 - General <u>contour of the displaced mandible</u> is symmetric
- Orthodontic treatment
 - <u>Pre-surgical</u> orthodontic treatment
 - Worsen the dental midline to allow greater osseous movements
 - Post-surgical orthodontic treatment
 - If ideal occlusion is desired
 - When skeletal and dental studies do not mandate orthodontic treatment pre-surgically

題號	題目					
1	下列關於「下顎矢向分裂骨切開術 (bilateral sagittal split osteotomy)的					
1						
	敘述,何者錯誤?」					
	(A) 此種術式只能讓下顎骨往後退,無法讓下顎前移					
	(B) 術式是在下顎升枝內側面作水平的骨切開,在前緣作矢狀骨切開					
	以及在臼齒頰側面作垂直的骨切開					
	(C) 在骨切開區域產生了大面積骨質重疊的伸縮效應,具備多方向移					
	動的彈性					
	(D) 易傷害到下齒槽神經					
答案(出處: Peterson's Principles of Oral and Maxillofacial Surgery(2004), 2 nd					
A)	edition, edited by Michael Miloro					
題號	題目					
2	兩側矢向劈裂骨切開術 (bilateral sagittal split osteotomy) 可用來治療何					
	症?1.下顎前突症(mandibular prognathism);2.下顎後縮症(mandibular					
	retrognathism)					
	(A) 只有1					
	(B) 只有2					
	(C) 12					
	(D) 12均不正確					
答案(出處: Contemporary Oral and Maxillofacial Surgery, Peterson, L. j., 1998					
C)	5 th edition					