Squamous cell carcinoma (SCC) is the most common neoplasm of the maxillofacial region and an infrequent finding in patients under the age of 40.1 Oral SCC (OSCC) is likewise rare in patients younger than 40, with cited incidences of 0.4%2 to 6.6%.3 Intraorally, SCC of this younger population has a predilection for the tongue and lips4-8 and gingival involvement is distinctly unusual.

SCC in patients under 20 years of age (which we herein refer to as the adolescent population) is exceptionally rare. Most reported cases have originated in the respiratory tract including the larynx, trachea, bronchi, and lungs; skin; and genital tract.9

In this study, we present 4 cases of gingival OSCC. All 4 cases occurred in otherwise healthy adolescent patients. We also review the current literature on OSCC affecting the younger population, with specific focus on diagnostic challenges faced by clinicians and pathologists, etiology, management considerations, and prognostic implications.

CASE REPORTS

Case 1

A healthy 18-year-old white female was referred for evaluation of gingival lesions with associated teeth mobility. Her medical and family histories were noncontributory; however, a 3.5-pack-year history of cigarette smoking was disclosed. On intraoral examination, multiple white, nodular, and ulcerated growths were present upon the #22-27 facial and lingual gingiva. Radiographs of this region revealed 50% to 75% horizontal bone loss (Fig. 1). The clinical impression included an atypical epithelial proliferation versus traumatic or factitial injury. A biopsy was performed and read as “epithelial proliferation suggestive of squamous odontogenic tumor-like proliferation.” Because of these equivocal findings, it was determined that a second biopsy was warranted. Microscopic examination of the second specimen showed a verrucous-appearing epithelial proliferation with a prominent endophytic growth pattern. The tumor was characterized by a central, keratin-filled crater with distinct lateral cupping and exhibited the overall architecture of a keratoacanthoma (Fig. 2). The epithelium was markedly dyskeratotic with mild cellular pleomorphism. Stromal invasion was identified toward the lesion base and several sections showed deep infiltration into the bone, prompting consideration of a carcinoma cuniculatum. A diagnosis of well-differentiated squamous cell carcinoma was ultimately rendered. The patient was subsequently treated with a hemimandibulectomy and bilateral supraomohyoid neck dissections. The final pathologic diagnosis was well-differentiated squamous cell carcinoma. Perineural and lymphovascular invasion were absent and excised lymph nodes were negative for carcinoma. She conti-
ues to be without evidence of disease 51 months postoperatively.

Case 2
A healthy 17-year-old white male was referred for evaluation of a white, nodular mass of the left posterior maxillary buccal gingiva, extending through the interproximal area to palatal tissues. His medical and family histories were noncontributory. His social history was negative for tobacco and alcohol products. Radiographic evidence of bone loss was noted between the involved molars. The clinical impression from the referring clinician was an abscess with granulation tissue. The initial biopsy revealed a squamous proliferation characterized by focal epithelial detachment, individual cell keratinization, and mild atypia (Fig. 3). After examination of multiple sections, the biopsy was read as “epithelial proliferation suspicious for well-differentiated squamous cell carcinoma.” It was further stated that distinction from pseudoepitheliomatous hyperplasia (PEH) was difficult in this case. A second biopsy was performed and revealed features diagnostic of a well-differentiated squamous cell carcinoma. The patient underwent a left hemimaxillectomy with left suprathyroid neck dissection and a final pathologic diagnosis of well-differentiated squamous cell carcinoma was rendered. Perineural and lymphovascular invasion were absent and the excised lymph nodes were negative for carcinoma. Interestingly, the patient returned 6 months postoperatively claiming of pain in the malar region. CT imaging revealed mucosal thickening in the left maxillary sinus. Another biopsy was performed and showed the presence of atypical epithelium with one detached epithelial island. In conjunction with an outside consultant’s opinion, it was decided that definitive evidence of recurrent carcinoma was not present in this specimen. Both the primary and consulting pathologist agreed that the histologic interpretation was extremely challenging and follow-up was strongly recommended. The patient is without disease 46 months postoperatively.

Case 3
A healthy 11-year-old white female presented for evaluation of a nodulo-papillary growth of the right maxillary facial gingiva, noted by her parents after spontaneous exfoliation of the primary canine. Her medical, family, and social histories were noncontributory. The biopsy was diagnosed as well-differentiated squamous cell carcinoma. A right hemimaxillectomy was performed (Fig. 4) and also read as well-differentiated squamous cell carcinoma with keratoacanthoma-like features (Fig. 5). The patient continues to be without disease 6 months postoperatively.
Case 4

A healthy 11-year-old white female presented for evaluation of a white lesion of the right mandibular buccal gingiva. Her medical, family, and social histories were noncontributory. An excisional biopsy was performed and diagnosed as “fibroepithelial hyperplasia with multiple foci of retained odontogenic epithelial rests,” most consistent with a PEH-like process. Three years later, the patient returned with a similar lesion at the same site. A follow-up incisional biopsy revealed histologic features of a well-differentiated squamous cell carcinoma. The biopsy was reviewed by several oral and surgical pathologists, all of whom agreed with the diagnosis. The patient was treated with a marginal mandibulectomy and continues to be without disease 24 months postoperatively.

DISCUSSION

Literature review

Thompson et al.5 performed a retrospective review at the Armed Forces Institute of Pathology (AFIP) over a 30-year period and documented only 20 cases of OSCC in patients younger than 20 years of age. Although the total number of OS Cs was not stated, this review was an extension of a previous AFIP study,4 in which 14,253 OS Cs accessioned before 1970 were studied. In the Thompson series, the most common sites of involvement were the tongue (9 cases) and the lips (6 cases); 4 patients had confirmed ipsilateral cervical metastases. The histologic grading ranged from well- to poorly differentiated and several tumors exhibited a papillary growth pattern. These patients had no reported hereditary or genetic predisposing factors. We performed a literature review and identified 63 published cases of adolescent OSCC in the English language, as summarized in Table I.3-5,7-9,25 Of note, we also reviewed several papers that examined OSCC in patients under the age of 40.6,26-32 However, specific information regarding adolescent patients was often difficult to extrapolate from these studies; consequently, they are not included in Table I.

Adolescent OSCC originating in the gingiva is exceptionally rare. To our knowledge, only 4 cases have been previously published. These cases are highlighted in Table I and summarized in Table II with our present 4 cases. Of these 8 cases, the affected patients ranged from 4 to 18 years in age and a slight predilection for the maxillary gingiva was seen. Clinically, most tumors were described as white, nodular or exophytic, sometimes granular or papillary-appearing proliferations.

Clinical and histopathologic challenges

Diagnosing OSCC in the very young patient can be challenging, both on a clinical and microscopic level. On the gingiva, clinically white lesions may be mistaken for a wide array of benign epithelial proliferations such as squamous papilloma, verruca vulgaris, and nonspecific epithelial hyperplasia. Lesions of traumatic origin such as frictional hyperkeratosis, chemical burns, or factitial injury may also be considered. Exophytic lesions may be misdiagnosed as reactive proliferations such as a pyogenic granuloma,33 fibroma, peripheral ossifying fibroma, or peripheral giant cell granuloma; or inflammatory entities such as an abscess or parulis.21 Granular-appearing lesions may raise the possibility of
a granulomatous process, including a foreign body reaction and less likely, a deep fungal infection or oral manifestation of tuberculosis or Crohn’s disease. In cases with intraosseous involvement, the differential diagnosis broadens and may include a central giant cell granuloma and Langerhans cell histiocytosis, among other entities.

Unfortunately, the microscopic diagnosis of OSCC in this young age group is equally challenging. The often bland histologic features of most adolescent OSCCs, particularly those originating from the gingiva, can make distinction from reactive and benign neoplastic processes extremely difficult. Diagnostic pitfalls deserving mention include PEH, as illustrated by our second and fourth cases as well as others; keratoacanthoma, as illustrated by our first and third cases and others; and squamous odontogenic tumor.

Pseudoepitheliomatous hyperplasia (PEH). PEH is characterized histologically by elongation of rete ridges and pseudo-invasion of the stroma by squamous epithelium. The epithelial islands often exhibit jagged or irregular outlines with variable keratin pearl formation and mitotic activity. In contrast to OSCC, the pseudo-“invasive” islands of PEH are comprised of cytologically benign cells with a distinct absence of atypical mitotic figures or individual cell keratinization.23,35,36

Keratoacanthoma (KA). KA is a controversial entity with purported unique behavioral and microscopic characteristics. Involvement of the oral mucosa, so called solitary intraoral KA, has been documented in isolated case reports.33,34,37,38 The histologic hallmarks of KA include a central, keratin-filled invagination surrounded by hyperplastic and dyskeratotic squamous epithelium; broad, pushing rete ridges that undermine the adjacent non-neoplastic mucosa, imparting the appearance of acute lateral “lipping”; sheets and islands of epithelium within the stroma; keratin pearl formation; and infrequent mitotic figures.33,36 Somewhat

<table>
<thead>
<tr>
<th>Author</th>
<th>Year</th>
<th>No. of cases</th>
<th>Age in years</th>
<th>Gender</th>
<th>Site</th>
</tr>
</thead>
<tbody>
<tr>
<td>Frank et al.</td>
<td>1936</td>
<td>1</td>
<td>Newborn</td>
<td>M</td>
<td>Tongue</td>
</tr>
<tr>
<td>Saleebey et al.</td>
<td>1940</td>
<td>11</td>
<td>Newborn (2)</td>
<td>NS</td>
<td>Tongue</td>
</tr>
<tr>
<td>New and Hertz</td>
<td>1940</td>
<td>1</td>
<td>13</td>
<td>M</td>
<td>L margin and base of tongue</td>
</tr>
<tr>
<td>Merrifield et al.</td>
<td>1955</td>
<td>1</td>
<td>5</td>
<td>F</td>
<td>FOM</td>
</tr>
<tr>
<td>Frazell and Lucas</td>
<td>1962</td>
<td>1</td>
<td>19</td>
<td>F</td>
<td>Lateral tongue</td>
</tr>
<tr>
<td>Venables and Craft</td>
<td>1966</td>
<td>1</td>
<td>17</td>
<td>F</td>
<td>R border of tongue</td>
</tr>
<tr>
<td>Pichler et al.</td>
<td>1972</td>
<td>1</td>
<td>19</td>
<td>M</td>
<td>R lateral tongue</td>
</tr>
<tr>
<td>Turner and Snitzer</td>
<td>1974</td>
<td>1</td>
<td>12</td>
<td>M</td>
<td>R dorsal, lateral, ventral tongue</td>
</tr>
<tr>
<td>Byers</td>
<td>1975</td>
<td>4</td>
<td>17</td>
<td>NS</td>
<td>NS</td>
</tr>
<tr>
<td>Patel and Dave</td>
<td>1976</td>
<td>5</td>
<td><20</td>
<td>Anterior tongue</td>
<td></td>
</tr>
<tr>
<td>Krolls and Hoffman</td>
<td>1976 (?-1973)</td>
<td>5</td>
<td>14</td>
<td>M</td>
<td>Tongue</td>
</tr>
<tr>
<td>Thompson et al.</td>
<td>1999 (1966-1999)</td>
<td>20</td>
<td><20</td>
<td>M</td>
<td>Tongue (9 cases)</td>
</tr>
<tr>
<td>Soni and Chatterji</td>
<td>1982</td>
<td>1</td>
<td>11</td>
<td>M</td>
<td>L tongue</td>
</tr>
<tr>
<td>Son and Kapp</td>
<td>1985</td>
<td>1</td>
<td>10</td>
<td>M</td>
<td>R maxillary alveolus</td>
</tr>
<tr>
<td>Earle et al.</td>
<td>1985</td>
<td>1</td>
<td>17</td>
<td>F</td>
<td>R buccal</td>
</tr>
<tr>
<td>Sacks et al.</td>
<td>1985</td>
<td>1</td>
<td>18</td>
<td>M</td>
<td>R anterior tongue</td>
</tr>
<tr>
<td>Usenius et al.</td>
<td>1987</td>
<td>1</td>
<td>19</td>
<td>M</td>
<td>L anterior tongue</td>
</tr>
<tr>
<td>Bill et al.</td>
<td>2001</td>
<td>1</td>
<td>14</td>
<td>M</td>
<td>L lateral tongue</td>
</tr>
<tr>
<td>Sasaki et al.</td>
<td>2005</td>
<td>1</td>
<td>19</td>
<td>F</td>
<td>NS</td>
</tr>
<tr>
<td>O’Regan et al.</td>
<td>2006</td>
<td>2</td>
<td>16-20</td>
<td>M</td>
<td>NS</td>
</tr>
<tr>
<td>Sturgis et al.</td>
<td>2005</td>
<td>2</td>
<td>18</td>
<td>M</td>
<td>Tongue</td>
</tr>
</tbody>
</table>

M, male; F, female; NS, not specified; L, left; R, right; FOM, floor of mouth. *These 19 cases were subsequently included in the review by Thompson et al.
worrisome features such as individual cell keratinization33 and mild cytologic atypia39 may also be seen. In contrast to OSCC, true stromal invasion should not be present. Furthermore, the “classic” clinical course of KAs (i.e., rapid onset followed by regression) is not expected in OSCC. To date, the issue of whether KA warrants separate designation from SCC or if it simply represents a very well differentiated SCC remains debatable.

Squamous odontogenic tumor (SOT). SOT or SOT-like proliferations are composed microscopically of bland squamous epithelial islands with smooth peripheral borders.40 The islands may occasionally undergo central cystic change and dystrophic calcification. In contrast to OSCC, the constituent cells of SOT do not demonstrate cytologic atypia or increased mitotic activity. Furthermore, true SOTs are predominantly intraosseous lesions.

Last, a rare entity known as carcinoma cuniculatum (CC) also deserves mention as it was a histologic consideration for our first case. CC is considered to be either a variant of a well-differentiated SCC or verrucous carcinoma as it bears clinical and histologic resemblance to both. A slow-growing lesion with a tendency toward deep osseous invasion, CC is characterized architecturally by branching, keratin-filled crypts alternating with prominently keratinized papillary projections.41 There is broad invasion of the stroma by islands of minimally atypical squamous cells that may exhibit microabscess formation.41 Most CC originate from the gingival or palatal mucosa although the bulk of the tumor mass may be found within bone.41

Because of difficulties in clinical and microscopic interpretation of adolescent OSCC, it has been suggested that lesions exhibiting unusual behavior, such as delayed healing, continued enlargement, and/or osseous destruction, be re-biopsied or excised with adequate margins.23 A similar approach is recommended for lesions demonstrating histologic ambiguity on initial biopsy.

Etiology

The etiologic basis of OSCC affecting young patients has long been debated. The “classic” environmental risk factors most strongly implicated in OSCC development (e.g., tobacco smoking, alcohol consumption, and betel quid use30) are of questionable etiologic significance in this population. Many authors have remarked that these habits are infrequent in younger individuals and that the shorter exposure times may be insufficient to induce carcinogenesis.3,24,31,42,43 Schantz et al.44 postulated that tumorigenesis is not only dependent on the type and level of carcinogen exposure but genetic sensitivity of the individual as
well. Their group found that young adults with SCCs of the upper aerodigestive tract exhibited increased susceptibility to mutagen-induced chromosomal damage. OSCC in this young age group has also been linked to several heritable conditions, including the familial genodermatoses and chromosomal instability syndromes (Table III). Furthermore, systemic factors leading to immunologic deficiencies, such as solid organ transplantation, bone marrow transplant, and long-term immunosuppressive therapy, have been documented in some cases. All 4 patients in our study were healthy and well, with no suggestion of such predisposing factors.

Although the molecular pathogenesis of adolescent OSCC is of interest, the paucity of reported cases has precluded extensive study on this subject. In contrast, OSCC in patients between the ages of 20 and 40 has garnered considerable research attention in recent years. Factors of probable relevance include viral infections and a wide array of genetic markers.

Viral infections. Human papillomavirus (HPV) appears to be of controversial significance in OSCC affecting persons under the age of 40 years. Koch et al. stated that HPV of the oral mucosa was exceptionally rare in preadolescent children prior to sexual activity. Similarly, El-Mofty and Lu found 0/15 (0%) OSCCs in patients under 40 were positive for HPV-16 by polymerase chain reaction (PCR).

Genetic markers. Lingen et al. explored p53 expression in SCCs of patients 40 and under with no identifiable risk factors. This group found that 17/21 (81%) of the tumors studied overexpressed p53 via immunohistochemistry (IHC). This percentage was reportedly equal to or higher than p53 expression in SCCs of older patients with traditional risk factors. Tremblay et al. confirmed significantly lower expression level of GSTP1 and the Fanconi’s anemia gene, FANCA, in OSCCs samples of their younger cohort compared to their older cohort. Zheng et al. concluded that cyclin D1 gene polymorphism is associated with early-onset head and neck SCCs, especially in young individuals without smoking or drinking histories. Last, Wang et al. found tongue cancers in their younger demographic to have higher frequencies of microsatellite instability, the variable shortening or lengthening of short tandem repeats attributable to DNA repair defects.

These studies highlight possible differences in the molecular and genetic mechanisms driving oral carcinogenesis in younger patients compared to the older population. Whether OSCC in the younger population represents an entity distinct from its adult counterpart remains unresolved at this time.

Clinical management and prognosis

Undoubtedly, treating adolescent patients with OSCC can pose challenges as well. In this very young population, special consideration must be given to optimizing esthetics, prosthetic reconstruction and modification, psychological implications, and follow-up. In most cases, a comprehensive medical/dental team will be required for proper management. In the very limited number of cases published, treatment has consisted predominantly of wide surgical excision with or without neck dissection. Some of these patients have also undergone adjuvant radiation therapy and/or chemotherapy. Gingival OSCC cases have been managed with a hemimaxillectomy or segmental/marginal resection, with the neck being addressed if deemed necessary. Fortunately, most reported patients have had long disease-free intervals with no recurrence.

Interestingly, conflicting data exist regarding the prognosis of young patients with OSCC. Some authors contend that OSCCs affecting patients younger than 40 pursue a more aggressive course with early metastasis and poorer survival outcomes. In contrast, other groups have found either comparable or improved 5-year survival rates when compared with older patients with OSCC. Goldstein and Irish and Friedlander et al. found that younger individuals with OSCC exhibited higher locoregional recurrence, although this did not portend to a poorer survival outcome. Myers et al. correlated decreased survival with presence of perineural invasion, lymphovascular invasion, and surgical margins of less than 5 mm. Meticulous long-term follow-up appears warranted in all cases, including thorough evaluation for second primaries and cervical metastasis.

In summary, we present 4 cases of gingival OSCC occurring in otherwise healthy adolescents. Moreover, we have reviewed common difficulties encountered in the clinical and microscopic interpretation of such cases. It is encouraging that significant strides have been achieved in understanding the molecular pathobiology of OSCC in the younger population. However, it is also clear that little is known about OSCC in the adolescent patient. Ultimately, continued study of this unique patient population may help in establishing diagnostic parameters and management guidelines.
REFERENCES
45. Schantz SP, Hsu TC, Ainslie N, Moser RP. Young adults with head and neck cancer express increased susceptibility to mutagen-induced chromosome damage. JAMA 1989;262:3313-5.
48. Schantz SP, Hsu TC, Ainslie N, Moser RP. Young adults with head and neck cancer express increased susceptibility to mutagen-induced chromosome damage. JAMA 1989;262:3313-5.