原文題目(出處):	Which is the correct statistical test to use?	
	Br J Oral & Maxillofac Surg 2008;46:38–41	
原文作者姓名:	Evie McCrum-Gardner	
通訊作者學校:	University Of Ulster, Shore Road, Newtownabbey BT37	
	0QB, United Kingdom	
報告者姓名(組別):	林煒倫(int B組)	
報告日期:	97/12/19	

內文:

• Introduction:

Choosing the appropriate statistical test:

- 1. To decide what scale of measurement your data is.
- 2. Consider the analysis required

• Three main type of scales of measurement

- 1. Nominal: categories but no order. Ex: sex, marital status, location of lesion.
- 2. Ordinal: ordered categories. Ex: pain, stage of tumor.
- 3. Interval: including age (years), weight (kg) or length of osteotomy (cm).

• Parametric assumptions

✓ Examine the distribution of interval-scale data to check if they are normally distributed→bell-shaped, symmetrical about the mean.

✓ normality tests: Kolmogorov–Smirnov and Shapiro–Wilks.

• Comparison of two groups

Selecting the appropriate test for comparisons between two groups

Scale of measurement	Independent samples	Paired samples
Interval scale (parametric assumptions satisfied) Ordinal scale or interval scale (parametric assumptions not satisfied)	Independent samples t-test Mann–Whitney U-test	Paired samples f-test Wilc ox on signed rank test
Nominal scale		
Two categories	χ^2 -Test for 2 $ imes$ 2 table	McNemar's te <i>s</i> t
C categories (C>2)	χ^2 -Test for $2 imes C$ table	-

A. two independent groups

(1) Independent samples t-test \rightarrow compare sample means from two independent groups for an interval-scale

(2) Mann–Whitney U-test \rightarrow compare two independent samples when data are either interval scale but assumptions for t-test (normality) are not satisfied, or ordinal (ranked) scale.

(3) Chi-square ($\chi 2$) test \rightarrow compare proportions between two or more independent

groups or investigate if there is any association between two nominal-scale variables. **B. two paired groups**

(1) Paired samples t-test \rightarrow compare two sample means where there is a one-to-one correspondence (or pairing) between the samples.

(2) Wilcoxon signed rank test \rightarrow compare two paired samples when data are either interval scale but assumptions or the paired t-test (normality of within-pair differences) are not satisfied or ordinal (ranked) scale.

(3) McNemar's test \rightarrow compare two paired samples when the data are nominal and dichotomous.

• Comparisons of more than two groups

 $\label{eq:selecting-the-appropriate-test} Selecting the appropriate-test for comparisons between more than two groups$

Scale of measurement	Independent samples	Paired samples
Interval scale (parametric assumptions satisfied)	One-way ANOVA	Repeated measures analysis of variance
Ordinal scale or interval scale (parametric assumptions not satisfied)	Kruskal–Wallis one-way ANOVA	Friedman's test
Nominal scale	χ^2 -Test for RXC table	Cochran's Q

A. independent groups

(1) One-way analysis of variance (ANOVA) \rightarrow more than two independent groups being

Compared if the parametric assumptions are satisfied.

(2) Kruskal–Wallis one-way ANOVA \rightarrow used for ordinal data, or an interval-scale variable, which are not normally distributed.

(3) Chi-square (χ 2) test \rightarrow used for nominal data.

B. paired/related groups

(1) Repeated-measures analysis of variance \rightarrow used if the parametric assumptions are satisfied.

(2) Friedman's test \rightarrow used for ordinal data or an interval-scale variable that is not normally distributed.

(3) Cochran's Q-test \rightarrow used for nominal dichotomous data when there re more than two related groups.

- Association between two interval or ordinal variables
- ✓ **correlation coefficient** is used to investigate the association between two interval or ordinal variables.
- *1.* **Pearson's product-moment correlation coefficient** is used for both variables are interval and approximately normally distributed.
- *2.* **Spearman's rank correlation** is used for either variable is ordinal or interval and skewedcoefficient.
- ✓ **multiple regression** analysis with an interval-scale response (dependent) variable and several

predictor (independent) variables.

- \checkmark Logistic regression is used when the response variable is dichotomous.
- Power, P values, and percentages
- ✓ Make a <u>sample size calculation</u> so that the study will have sufficient power to detect significant difference.

- \checkmark It is often necessary to <u>combine categories</u> so that there are sufficient numbers in each group.
- \checkmark It is essential to also <u>quote the numerator and/or the denominator</u> so that it is clear how the percentage has been calculated.
- ✓ A significance level (P value) is considered significant if it is <u>less than 0.05</u>.

題號	題目
1	比較不同種族之間得到鐮刀型貧血的統計方法中,樣本的分類是屬於:
	(A)Nominal
	(B)Ordinal
	(C)Interval
	(D)none of above
答案(A)	出處:
題號	題目
2	在統計學上,P值須在何種範圍內才可被認為是顯著的結果
	(A)<0.05
	(B)<0.5
	(C)0.5~1
	(D)>1
答案(A)	出處: