原文題目(出處):	Does the presence of mandibular third molars increase the
	risk of angle fracture and simultaneously decrease the risk of
	condylar fracture?
原文作者姓名:	D. H. Duan1, Y. Zhang2
通訊作者學校:	1. Department of General Dentistry, Peking University
	School and Hospital of Stomatology, Beijing 100081,
	China
	2. Department of Oral and Maxillofacial Surgery, Peking
	University School and Hospital of Stomatology, Beijing
	100081, China
報告者姓名(組別):	Int B. 李嘉翔
報告日期:	97.01.08

內文:

Abstract.

- 1. Previous studies → mandibular third molars (M3s) increase the risk of mandibular angle fractures and decrease the risk of mandibular condylar fractures.
- 2. 700 patients with and without impacted M3s. → The results showed that
 - a. patients with impacted M3s vs without impacted M3s → by moderate trauma force → lower risk, condylar fracture → higher risk, angle fracture
 - b. not be identified by high trauma force.
- 3. Patients with impacted M3s vs. without impacted M3s → no matter how they were injured (assault, fall, motor vehicle accident, other). → higher risk , angle fracture
- 4. When injured by assault or in a motor vehicle accident→ impacted M3s →less likely to have a condylar fracture.
- 5. M3s \rightarrow dominant factor \rightarrow angle fracture + preventing condylar fracture.

Introduction

- 1. Retrospective studies → with M3s vs.without impacted M3s. → more at risk of mandibular angle fractures
- 2. Risk of fracture was also dependent on M3 position
- 3. With impacted M3s vs. without impacted M3s \rightarrow less condylar fracture
- 4. Position of M3s, injury mechanism and injury cause,

Patients and methods

- 1. January 1991 to April 2005, 902 patients were treated for mandible fractures at <u>Peking University School</u> and <u>Hospital of Stomatology</u>, Department of Oral and Maxillofacial Surgery.
- 2. Data collected included age, sex, injury cause (motor vehicle accident, assault, fall, other), position of M3s and fractures sites.
- 3. 202 patients aged 16 years or younger → Excluded
- 4. The magnitude of trauma force
 - low trauma force \rightarrow 1mandibular fracture site, moderate trauma force \rightarrow 2 mandibular fracture sites high trauma force \rightarrow 3 or more mandibular fracture sites.
- 5. To analyse the position \rightarrow
 - a. horizontal position(Class I, Class II and Class III)
 - b. vertical position (Class A, Class B and Class C)
 - c. absence of M3s \rightarrow Class 0

Horizontal	Amount of space available between ramus and second mola
Class I	Adequate space for eruption
Class II	Inadequate space for eruption
Class III	Third molar located partially or completely in ramus
Vertical	Relationship of third molar crown to second molar crown
Class A	Level at occlusal plane
Class B	Between the cemento-enamel junction of the second molar and occlusal plan
Class C	Below the cemento-enamel junction of the second molar

- d. Class IA \rightarrow not impacted but fully erupted.
- e. All remaining \rightarrow impactions.
- 6. SPSS version 10.0 (means and standard deviation, x^2 test, Student's t-test, Data were considered significant with P < 0.05.)

Results

- 1. 700 patients with 1280 mandibular fractures.
- 2. Motor vehicle accident (the most common) \rightarrow assault \rightarrow fall \rightarrow other
- 3. The most common fracture \rightarrow bi-fracture \rightarrow mono-fracture \rightarrow multi-fracture
- 4. Observed most frequently \rightarrow symphysis \rightarrow condyle \rightarrow body \rightarrow angle \rightarrow ramus
- 5. Mandibular angle fractures \rightarrow 197 patients, 5 bilateral
- 6. Condylar fractures \rightarrow 300 patients, 112 bilateral
- 7. $22 \rightarrow \text{condylar}^*1 + \text{angle fracture}^*1 \rightarrow 8 \text{ both}$ same side.
- 8. 700 patients ,1400 mandibular halves → 302 (22%) no M3s.
- 9. 1098 (78%) mandibular halves containing an M3,

a.horizontal position : Class I (525, 38%) → Class II (322, 23%) → Class III (251, 18%).

b.vertical position : Class A (656, 47%) → Class B (348, 25%) → Class C (94, 7%).

c.with impacted M3s \rightarrow younger , male

	Impacted M3s		Angle fracture		Condylar fracture	
Variable	Absent $(n = 330)$	Present $(n = 370)$	Absent $(n = 504)$	Present $(n = 196)$	Absent $(n = 400)$	Present $(n = 300)$
Age (years)	35.1 ± 10.9	$27.9 \pm 9.5^{**}$	31.9 ± 10.8	$29.7\pm10.6^*$	30.8 ± 10.1	$32.0 \pm 11.6^{**}$
Sex						
Male	254	309	399	164	332	231
Female	76	61**	105	32*	68	69**

- 10. Without impacted M3s vs. with impacted M3s (P < 0.05). → higher risk for condylar fractures,
- 11. With impacted M3s vs. without impacted M3s \rightarrow higher risk for angle fractures (P < 0.05).

	Condylar frac	ondylar fracture			Angle fracture		
				- ingie nuetu	-	_	
Impacted M3s	Absent	Present	P	Absent	Present	P	
Absent $(n = 330)$	163 (49%)	167 (51%)	0.000	285 (86%)	45 (14%)	0.000	
Present $(n = 370)$	237 (64%)	133 (36%)		218 (59%)	152 (41%)		
Table 4. Relationshi	p between M3	position and	risk of c	ondylar and a	ngle fracture		
	Condylar f	Condylar fracture			Angle fracture		
M3s	Absent	Present	Р	Absent	Present (%)	Р	
Horizontal position							
Class 0 $(n = 302)^*$	194 (64%)	108 (36%)	0.003	287 (95%)	15 (5%)	0.000	
Class I $(n = 525)$	361 (71%)	164 (31%)		478 (91%)	47 (9%)		
Class II $(n = 322)$	247 (77%)	75 (23%)		223 (69%)	99 (31%)		
Class III $(n = 251)$) 186 (74%)	65 (26%)		211 (84%)	40 (16%)		
Vertical position							
Class $\hat{0} (n = 302)^*$	194 (64%)	108 (36%)	0.003	287 (95%)	15 (5%)	0.000	
Class A $(n = 656)$	462 (70%)	194 (30%)		569 (87%)	87 (13%)		
Cluss II (n 050)	aco (==0.0)	70 (2204)		258 (74%)	90 (26%)		
Class B $(n = 348)$	269 (77%)	19 (2370)		200 (7170)	20 (20/0)		

12. Horizontal position of impacted M3s, highest incidence,

angle fractures \rightarrow Class II \rightarrow Class III \rightarrow Class I \rightarrow Class 0. condylar fractures \rightarrow Class 0 \rightarrow Class I \rightarrow Class III \rightarrow Class II

13. The highest incidence

angle fractures \rightarrow Class B \rightarrow Class A \rightarrow Class C \rightarrow Class 0 condylar fractures \rightarrow Class 0 \rightarrow Class C \rightarrow Class A \rightarrow Class B

- 14. Impacted M3s → lower risk of condylar fracture / higher risk of angle fracture
- 15. Without impacted M3s →moderate trauma force →higher risk of condylar fractures → lower risk of angle fractures
- 16. With impacted M3s vs. without impacted M3s → low trauma force → higher risk of angle fracture
- 17. The difference was not statistically significant for condylar fracture
- 18. No matter how they were injured → with impacted M3s → higher risk of angle fracture than those without impacted M3s (P < 0.05).

Table 5. Relationship between impacted M3s and risk of condylar and angle fracture in terms of injury mechanism

	Condylar fracture			Angle fracture		
Impacted M3s	Absent	Present	Р	Absent	Present	Р
Low trauma force Absent $(n = 134)$ Present $(n = 134)$	107 (80%) 114 (85%)	27 (20%) 20 (15%)	0.261	118 (88%) 98 (73%)	16 (12%) 36 (27%)	0.002
Moderate trauma ford Absent $(n = 119)$ Present $(n = 182)$	ce 53 (45%) 120 (66%)	66 (56%) 62 (34%)	0.000	97 (82%) 75 (41%)	22 (19%) 07 (59%)	0.000
High trauma force Absent $(n = 77)$ Present $(n = 54)$	3 (4%) 3 (6%)	74 (96%) 51 (94%)	0.982	70 (91%) 45 (83%)	7 (9%) 9 (17%)	0.192

19. Assault or motor vehicle accident \rightarrow with impacted M3s \rightarrow less condylar fracture than those without impacted M3s (P < 0.05)

	Condylar fracture				
Impacted M3s	Absent	Present	Р		
Assault					
Absent (84)	54 (64%)	30 (36%)	0.008		
Present (85)	70 (82%)	15 (18%)			
Fall					
Absent (67)	23 (34%)	44 (66%)	0.482		
Present (62)	25 (40%)	37 (60%)			
Vehicle					
Absent (143)	63 (44%)	80 (56%)	0.008		
Present (162)	96 (59%)	66 (41%)			

Discussion

 The resistance to angle fractures is decreased by the presence of impacted M3s The highest risk → Class II and Class B

The lowest risk \rightarrow without M3s .

2. Angle fractures → tension at the superior border → compression at the inferior border.

- 3. Impacted M3s disrupting the cortical bridge of the superior border cause an inherent weakness in the mandibular angle. → why Class II and Class B positions → rather than Class III and Class C with the superior border intact.
- 4. KOBER et al. → angle was weakened by incompletely erupted M3s, → condylar fracture would decrease → forces would be dissipated by the angle fracture.
- 5. Angle was intact (with no M3s or fully erupted M3s)→more impact forces would transmit to the condyle → fracture
- 6. The severity of injury was the primary factor resulting in multiple fractures, not the presence or absence of M3s.
- 7. A single fracture(low traumatic force) →, impacted M3s increased the risk of angle fracture.
- 8. $M3s \rightarrow$ in the mono-fracture group. \rightarrow no influence on condylar fractures
- 9. This could be explained by the low force of injury: a fracture would occur at the condyle, due to its intrinsic weakness, rather than the angle with M3s.
- 10. Angle fracture \rightarrow more affected by impacted M3s than that of condylar fracture.

題號	題目
1	Which one is not the clinical features of exctodermal dysplasia?
	(A) female predominance
	(B) Oligodintia
	(C) Teeth maekedly reduced in number
	(D) The incisors usuallt appear tapered
答案(A)	出處:Oral and Maxillofacila pathology p.644
	male predominance is usually seen(X-linked inherance)
題號	題目
2	Which one is not correct about Warthin tumor
	(A) It's the most common benign parotid gland tumor
	(B) It usually occurs metachronous
	(C) It has been associated with cigarette smoking
	(D) It is also named papillary cystandeoma lymphomatosum
答案(A)	出處:Oral and Maxillofacila pathology p.415
	It's the 2 nd common benign parotid gland tumor